洛谷P1450.硬币购物
题目大意:4种面值c[i]的硬币,每种硬币持有d[i]个,问有多少种方法支付出正好N块钱。
可以先预处理出持有硬币无限的情况dp[n],即一个完全背包问题。
之后根据容斥原理,相当于求但是拥有限制,可以参考有限制的不定方程非负整数解的容斥方法,我们设全集为所有在无限情况下凑出S的方案数,属性为,那么就可以对所有补集的并用容斥原理展开进行计算,对于每个是由具有k个不同反向性质组成的集合,对应在容斥式子中的答案就是在无限情况下凑出 的方案数即。
最后用全集减去就可以了。
#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 100010;
const int mod = 1e9 + 7;
const double eps = 1e-8;
LL c[5], N;
LL d[5], S;
LL dp[maxn];
void solve()
{
memset(dp, 0, sizeof(dp));
dp[0] = 1;//价格为0时无限硬币组成之方法数
for (LL i = 1; i <= 4; i++)
{
for (LL j = 0; j <= S; j++)
{
if (j - c[i] >= 0)
dp[j] += dp[j - c[i]];
}
}
LL ans = 0;
for (LL i = 1; i < 16; i++)//枚举集合数1的个数
{
LL tmp = S, bit = 0;//1的个数
for (LL j = 1; j <= 4; j++)
{
if ((i >> (j - 1)) & 1)//这一位1
{
tmp -= c[j] * (d[j] + 1);
bit++;
}
}
if (tmp >= 0)
ans += (bit % 2 ? 1 : -1) * dp[tmp];//用容斥转化为无限制的完全背包情形
}
cout << dp[S] - ans << endl;
}
int main()
{
IOS;
for (int i = 1; i <= 4; i++)
cin >> c[i];
cin >> N;
for (int i = 0; i < N; i++)
{
for (int j = 1; j <= 4; j++)
cin >> d[j];
cin >> S;
solve();
}
return 0;
}
洛谷P1450.硬币购物的更多相关文章
- 洛谷 P1450.硬币购物 解题报告
P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...
- 洛谷 P1450 解题报告
P1450.硬币购物 题目描述 硬币购物一共有\(4\)种硬币.面值分别为\(c1,c2,c3,c4\).某人去商店买东西,去了\(tot\)次.每次带\(d_i\)枚\(c_i\)硬币,买\(s_i ...
- 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...
- 洛谷—— P1450 [HAOI2008]硬币购物
P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...
- 洛谷P1450 [HAOI2008]硬币购物
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...
- 【洛谷P1450】硬币购物
题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- 洛谷P2732 商店购物 Shopping Offers
P2732 商店购物 Shopping Offers 23通过 41提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交 讨论 题解 最新讨论 暂时没有讨论 题目背景 在商店中, ...
- 洛谷——P2708 硬币翻转
P2708 硬币翻转 题目背景 难度系数:☆☆☆☆☆(如果你看懂了) 题目描述 从前有很多个硬币摆在一行,有正面朝上的,也有背面朝上的.正面朝上的用1表示,背面朝上的用0表示.现在要求从这行的第一个硬 ...
随机推荐
- java继承子父类构造函数-子类的实例化过程
1 /* 2 * 子父类中的构造函数的特点. 3 * 在子类构造对象时,发现,访问子类构造函数时,父类也运行了. 4 * 为什么呢? 5 * 原因是:在子类的构造函数中第一行有一个默认的隐式语句.su ...
- 前端禁止使用F12、禁止右键
打开控制台直接跳转页面 //debug调试时跳转页面 var element = new Image(); Object.defineProperty(element,'id',{get:functi ...
- 字的研究(2)Fonttools-字体文件的解析
前言 本文主要介绍如果使用Python第三方库fontTools对TrueType字体文件(指使用TrueType描述轮廓的OpenType字体文件)的解析.修改和创建等操作. fontTools简介 ...
- 使用Termux并与ubuntu建立ssh连接
什么是Termux? Termux是一个Android终端仿真器和Linux环境应用程序,直接工作,无需根目录或设置.一个最小的基本系统被自动安装-额外的软件包可以使用APT软件包管理器来使用.不需要 ...
- linux 权限命令行 xshell 切换用户
一. 权限命令行 两种方式. 1.1 chown -R 指定的用户名, 权限的文件/文件夹 赋予这个用户的权限读写. /*1.0 权限命令行 1. chown -R 指定的用户名 权限的文件/文件夹 ...
- String 不可变
String 源码,String 的修饰符是 final String 采用的是共享模式,被放进常量池 String strA = "abc"; String strB = &qu ...
- 人工智能与智能系统2-> 机器人学2 | 时间与运动
<Robotics, Vision and Control>学习到第三章,我才发现这本书是有配套视频的,第二章看的好辛苦,很多地方生硬理解了一下,现在打算把视频再好好看一看,作为补充,也会 ...
- 「JOI 2014 Final」裁剪线
做法一 首先将边界也视作四条裁剪线,整个平面作为一张纸,视存在 \(y = -\infty, y = +\infty, x = -\infty, x = +\infty\) 四条直线. 按照纵坐标依次 ...
- 如何生成Java文档注释(Java Doc Comments)
在我们的Java SDK中已经提供了javadoc工具来生成我们的文档. 所以我们可以手动调用javadoc工具来生成文档,或者通过IDE生成.当然IDE也是调用javadoc,不过更快更省事. 注释 ...
- JAVA多线程学习十五 - 阻塞队列应用
一.类相关属性 接口BlockingQueue<E>定义: public interface BlockingQueue<E> extends Queue<E> { ...