Atcoder 题面传送门 & 洛谷题面传送门

我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限(

首先按照套路 Min-Max 容斥,\(ans=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times E(\min(T))\),考虑怎样求这个式子的值。首先我们需要搞清楚 \(E(\min(T))\),假设 \(T\) 中包含下标为 \(x_1,x_2,\cdots,x_m\) 这 \(m\) 个元素,那么 \(E(\min(T))\) 的实际意义就是期望最少选多少个数就能找到一个 \(x_i\) 的出现次数达到了其上界 \(b_{x_i}\),首先有可能我们抽到的数不在 \(T\) 当中,这里有一个小套路,我们记 \(e\) 为期望多少次才能抽到一个 \(T\) 中的数,那么显然 \(e=\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\),这样相当于我们将原来每一步的贡献 \(1\) 变成了 \(e\),因此我们只需将答案乘个 \(e\) 就可以得到最终的 \(E(\min(T))\)。这样一来我们就不用考虑不在 \(T\) 中的数的影响了,不过我们发现这东西是不太好直接求的,故我们不妨换个角度,我们假设到达最终状态时元素 \(x_i\) 被选择的 \(c_i\) 次,那么不难发现对于任意一个由初始状态 \(0,0,\cdots,0\) 到达最终状态的取数方式,它中间总要经过 \(\sum c_i\) 个满足 \(c_i<b_{x_i}\) 的状态,因此我们可以在每个中间状态中累加一次贡献,而对于一个满足 \(\forall i,c_i<b_{x_i}\) 的 \(c_1,c_2,\cdots,c_m\),只要它到达了这个状态,它就肯定会被统计入答案中,因此我们要求的实际上是所有满足满足 \(\forall i,c_i<b_{x_i}\) 的 \(c_1,c_2,\cdots,c_m\),到达 \(c_1,c_2,\cdots,c_m\) 的概率。而显然对于固定的 \(c_1,c_2,\cdots,c_m\),到达 \(c_1,c_2,\cdots,c_m\) 的概率可用总方案数除以到达 \(c_1,c_2,\cdots,c_m\) 的方案数计算,即 \(\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\),第一项为多重组合数,即将 \(i\) 个 \(c_i\) 填入一排 \(c_1+c_2+\cdots+c_m\) 个数的方案数,第二项表示生成 \(c_i\) 个 \(i\) 的方案数,生成一个 \(i\) 的概率为 \(\dfrac{a_i}{\sum\limits_{x\in S}a_x}\),生成 \(c_i\) 个 \(i\) 的概率就是 \((\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\),很好理解。

因此我们有:

\[E(\min(T))=\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}
\]

将其带入答案计算式可得

\[\begin{aligned}ans&=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod(\dfrac{a_i}{\sum\limits_{x\in S}a_x})^{c_i}\\&=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|-1}\times\dfrac{\sum a_i}{\sum\limits_{x\in T}a_x}\sum\limits_{c_i\lt b_{x_i}}\dfrac{(\sum c_i)!}{\prod c_i!}\times\prod a_i^{c_i}\times(\dfrac{1}{\sum\limits_{x\in T}a_x})^{\sum c_i}\end{aligned}
\]

注意到 \(\sum a_i\) 是定值,\(\sum\limits_{x\in T}a_x,\sum c_i\) 都不会超过 \(400\),因此考虑 \(dp\),可以将其放入背包的状态中,设 \(dp_{i,j,k}\) 表示所有 \(T\subseteq\{1,2,3,\cdots,i\}\),\(\sum\limits_{x\in T}a_x=j\),\(\sum c_i=k\) 的 \((-1)^{|T|-1}\prod\dfrac{1}{c_i!}a_i^{c_i}\) 的和,转移就分 \(i\in T\) 和 \(i\notin T\) 转移即可,若 \(i\notin T\) 则 \(dp_{i,j,k}\leftarrow dp_{i-1,j,k}\),否则我们枚举 \(c_i<b_i\),那么 \(dp_{i,j,k}\leftarrow -dp_{i-1,j,k}\times\dfrac{1}{c_i!}a_i^{c_i}\),二者相加即可,初始值 \(dp_{0,0,0}=-1\)(因为空集的 \((-1)^{|T|+1}=-1\)),求答案就枚举 \(\sum\limits_{x\in T}a_x=j,\sum c_i=k\),然后用 \(dp_{n,j,k}\times(\sum a_i)\times\dfrac{1}{j^{k+1}}\times k!\) 更新答案即可,第一维可以优化到,时间复杂度 \(\sum a_i(\sum b_i)^2\),空间复杂度 \(\sum a_i\sum b_i\),可以通过此题。

const int MAXN=400;
const int MOD=998244353;
int n,a[MAXN+5],b[MAXN+5],sa,sb,dp[MAXN+5][MAXN+5];
int inv[MAXN+5],ifac[MAXN+5],fac[MAXN+5];
void init_fac(int n){
for(int i=(inv[0]=inv[1]=ifac[0]=fac[0]=1)+1;i<=n;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) ifac[i]=1ll*ifac[i-1]*inv[i]%MOD,fac[i]=1ll*fac[i-1]*i%MOD;
}
int main(){
scanf("%d",&n);init_fac(MAXN);dp[0][0]=MOD-1;
for(int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]),sa+=a[i],sb+=b[i];
for(int i=1;i<=n;i++){
for(int j=sa;j>=a[i];j--) for(int k=sb;~k;k--)
for(int l=0,pw=1;l<=min(k,b[i]-1);l++,pw=1ll*pw*a[i]%MOD){
dp[j][k]=(dp[j][k]-1ll*dp[j-a[i]][k-l]*pw%MOD*ifac[l]%MOD+MOD)%MOD;
}
} int ans=0;
for(int i=1;i<=sa;i++) for(int j=0,pw=1;j<=sb;j++,pw=1ll*pw*inv[i]%MOD){
ans=(ans+1ll*dp[i][j]*pw%MOD*inv[i]%MOD*sa%MOD*fac[j]%MOD)%MOD;
} printf("%d\n",ans);
return 0;
}

Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)的更多相关文章

  1. AtCoder Grand Contest 038 简要题解

    从这里开始 比赛目录 Problem A 01 Matrix Code #include <bits/stdc++.h> using namespace std; typedef bool ...

  2. AtCoder Grand Contest 038 题解

    传送门 这场表现的宛如一个\(zz\) \(A\) 先直接把前\(b\)行全写成\(1\),再把前\(a\)列取反就行 const int N=1005; char mp[N][N];int n,m, ...

  3. AtCoder Grand Contest 038题解

    好久没更了 写点东西吧= = A 01Matrix 简单构造 左上角和右下角染成1其他染成0即可 #include<bits/stdc++.h> #define ll long long ...

  4. Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)

    洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...

  5. AtCoder Grand Contest 038

    目录 \(\bf A - 01 \ Matrix\) \(\bf B- Sorting \ a \ Segment\) \(\bf C-LCMs\) \(\bf D-Unique \ Path\) 这 ...

  6. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  7. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  8. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  9. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

随机推荐

  1. 更好的 java 重试框架 sisyphus 的 3 种使用方式

    回顾 我们前面学习了 更好的 java 重试框架 sisyphus 入门简介 更好的 java 重试框架 sisyphus 配置的 2 种方式介绍 更好的 java 重试框架 sisyphus 背后的 ...

  2. Linux信号处理编程

    01. 学习目标 了解信号中的基本概念 熟练使用信号相关的函数 了解内核中的阻塞信号集和未决信号集作用 熟悉信号集操作相关函数 熟练使用信号捕捉函数signal 熟练使用信号捕捉函数sigaction ...

  3. Java版人脸检测详解下篇:编码

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. 普通用户在命令终端使用Python脚本连入校园网

    普通用户在命令终端使用Python脚本连入校园网 想要连入校园网的步骤: 浏览器输入对应的IP地址,输入账号密码连网: 下载对应软件,输入账号密码连网: 而面对没有界面的服务器,而你又没有root权限 ...

  5. java 垃圾回收及内存分配策略

    一.在垃圾收集器对堆进行回收前,首先需要判断对象是否"存活",对已经"死去"的对象进行回收 判断对象是否存活:引用计数法和可达性分析法 引用计数法:给对象添加一 ...

  6. Linux 安装nacos

    1.已有mysql环境 2.解压文件 #tar -zxvf package/nacos-server-2.0.1.tar.gz 3.创建数据库nacos_config(confnacos-mysql. ...

  7. 有关于ONVIF

    1.什么是ONVIF2008年5月,由安讯士(AXIS)联合博世(BOSCH)及索尼(SONY)公司三方宣布携手共同成立一个国际开放型网络视频产品标准网络接口开发论坛,取名为ONVIF(Open Ne ...

  8. k8s入坑之路(15)kubernetes共享存储与StatefulSet有状态

    共享存储 docker默认是无状态,当有状态服务时需要用到共享存储 为什么需要共享存储: 1.最常见有状态服务,本地存储有些程序会把文件保存在服务器目录中,如果容器重新启停则会丢失. 2.如果使用vo ...

  9. 浅谈springboot自动配置原理

    前言 springboot自动配置关键在于@SpringBootApplication注解,启动类之所以作为项目启动的入口,也是因为该注解,下面浅谈下这个注解的作用和实现原理 @SpringBootA ...

  10. K8S 部署 SpringBoot 项目(一篇够用)

    现在比较多的互联网公司都在尝试将微服务迁到云上,这样的能够通过一些成熟的云容器管理平台更为方便地管理微服务集群,从而提高微服务的稳定性,同时也能较好地提升团队开发效率. 但是迁云存在一定的技术难点,今 ...