题意:

     蛋疼的题意,最后是泽神给我讲的题意,题意是对于一个数来说,如果他不能整除另一个数同时他和另一个数非互质,那么另一个数就是这个数的特别数,如10 的特别数有 4 6 8三个,同时题目还定义,有奇数个特别数的数是真数,现在给你一个范围,问你有多少个数字是真数.


思路:

    先打表,看下真实数的规律,假如当前数字是a,真实数其实就是6 到 a之间偶数的个数 + 奇数的平方数(如 9,25,49..) - 偶数的平方数(16 ,36 ,64..) 

就是 :                    
 a / 2 - 2 + Sqrt(a) % 2 . 

因为如果Sqrt(a)是奇数奇数平方数就比偶数平方数多1,否则相等,所以直接+ Sqrt(a) % 2,还有一点就是sqrt()对于__int64会失精度,所以用二分去找sqrt();

所以最后答案就是:

y / 2 - 2 + Sqrt(y) % 2   -   ((x - 1) / 2 - 2 + Sqrt(x - 1) % 2 ) 

注意 x=1 和 x = 2的情况处理下,不然会错...下面是打表代码 和 AC代码


AC代码:

#include<stdio.h>

__int64
max_ = 3037000499; __int64 Sqrt(__int64 num)
{
__int64
low ,mid ,up;
low = 1 ,up = num;
if(
up > max_) up = max_;
__int64
mk = 0;
while(
low <= up)
{

mid = (low + up) / 2;
if(
mid * mid > num)
{

up = mid - 1;
}
else
{

low = mid + 1;
mk = mid;
}
}
return
mk;
} int main ()
{
__int64
x ,y ,t;
scanf("%I64d" ,&t);
while(
t--)
{

scanf("%I64d %I64d" ,&x ,&y);
__int64
xx = (x-1) / 2 - 2 + Sqrt(x-1) % 2;
__int64
yy = y / 2 - 2 + Sqrt(y) % 2; if(x == 1 || x == 2) xx = 0;
if(
y == 1) yy = 0;
printf("%I64d\n" ,yy - xx);
}
return
0;
}
打表代码:

#include<stdio.h>

int main ()
{
   int sss = 0;
   for(int i = 1 ;i <= 100 ;i ++)
   {
      int now = i ,sum = 0;
      for(int j = 2 ;j < i ;j ++)
      {
         if(i % j == 0)continue;
         for(int ii = 2 ;ii <= j ;ii ++)
         if(i % ii == 0 && j % ii == 0)
         {
            sum++;
            break;
         }
      }
      
     if(sum % 2) printf("%d " ,i);
   }
   getchar();
   getchar();
   getchar();
   return 0;
}
   



hdu4279 找规律+小想法的更多相关文章

  1. [CSP-S模拟测试]:小盆友的游戏(数学 or 找规律)

    题目传送门(内部题110) 输入格式 第一行一个整数$N$,表示小盆友的个数. 第二行$N$个整数$A_i$,如果$A_i=-1$表示$i$目前是自由身,否则$i$是$A_i$的跟班. 输出格式 一个 ...

  2. 51nod_1831: 小C的游戏(Bash博弈 找规律)

    题目链接 此类博弈不需要考虑sg函数,只需要确定必胜态和必败态,解题思路一般为打败先打表找规律,而后找规律给出统一的公式.打表方式:给定初始条件(此题中为ok[0]=ok[1]=0),然后从低到高枚举 ...

  3. 51nod 1831: 小C的游戏(Bash博弈 找规律)

    题目链接 此类博弈不需要考虑sg函数,只需要确定必胜态和必败态,解题思路一般为打败先打表找规律,而后找规律给出统一的公式.打表方式:给定初始条件(此题中为ok[0]=ok[1]=0),然后从低到高枚举 ...

  4. hdu4952 Number Transformation (找规律)

    2014多校 第八题 1008 2014 Multi-University Training Contest 8 4952 Number Transformation Number Transform ...

  5. BZOJ-1228 E&D 博弈SG+找啊找啊找规律

    讨厌博弈,找规律找半天还是错的.... 1228: [SDOI2009]E&D Time Limit: 10 Sec Memory Limit: 162 MB Submit: 666 Solv ...

  6. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  7. HDU 4910 Problem about GCD 找规律+大素数判断+分解因子

    Problem about GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. HDU 4861 Couple doubi (数论 or 打表找规律)

    Couple doubi 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/D Description DouBiXp has a ...

  9. 【数论,找规律】Uva 11526 - H(n)

    原来做过的题再看还是没想出来,看来当时必然没有真正理解.这次回顾感觉理解更透彻了. 网上的题解差不多都是一个版本,而且感觉有点扯.根据n=20猜出来的? 好吧哪能根据一个就猜到那么变态的公式.其实这题 ...

随机推荐

  1. 网络地址转换NAT的两种模式(概念浅析)& IP溯源

    由于全球IPv4地址越来越少.越来越贵,因此大到一个组织,小到一个家庭一个人都很难获得公网IP地址,所以只能使用内网地址,从而和别人共享一个公网IP地址.在这种情况下,NAT技术诞生. 翻译 NAT( ...

  2. CentOS7 安装 MySQL Cluster 7.6.7

    引用自:http://lemonlone.com/posts/mysql-ndb-cluster-install/ 仅做备份和配置文件更改 1.先在VMware中安装 CentOS-7-x86_64- ...

  3. Java程序员必备后台前端框架--Layui【从入门到实战】(一)

    layui入门使用及图标的使用 作者 : Stanley 罗昊 [转载请注明出处和署名,谢谢!] [编程工具:IDEA] 下载Layui与文件分析 下载直接去官网下载即可 文件分析 下载完成后,解压会 ...

  4. 【Arduino学习笔记04】消抖动的按键切换

    "开关抖动": 由于按键是基于弹簧-阻尼系统的机械部件,所以当按下一个按键时,读到的信号并不是从低到高,而是在高低电平之间跳动几毫秒之后才最终稳定. 代码解读: 1 const i ...

  5. 手把手教你Spring Boot2.x整合Elasticsearch(ES)

    文末会附上完整的代码包供大家下载参考,码字不易,如果对你有帮助请给个点赞和关注,谢谢! 如果只是想看java对于Elasticsearch的操作可以直接看第四大点 一.docker部署Elastics ...

  6. 如何用Flink把数据sink到kafka多个不同(成百上千)topic中

    需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现 ...

  7. Docker SDK api操作Docker

    下载包 go get "github.com/docker/docker/api/types" go get "github.com/docker/docker/clie ...

  8. ResNet的个人总结

    ResNet可以说是我认真读过的第一篇paper,据师兄说读起来比较简单,没有复杂的数学公式,不过作为经典的网络结构还是有很多细节值得深究的.因为平时不太读英文文献,所以其实读的时候也有很多地方不是很 ...

  9. net start MongoDB 服务没有响应控制功能。 请键入 NET HELPMSG 2186 以获得更多的帮助。

    我在 Windows 电脑上修改了 mongo.cfg 文件后 执行 net start mongodb 的时候,命令行出现了这个报错. 这个报错,有几种情况可以进行排查 1. 你的 mongod 命 ...

  10. 一种3位sar adc工作过程推导(二)

    3位sar adc采用下图的电容阵列,需要23个电容,它的基本单元有二进制加权的电容阵列.1个与LSB电容等值的电容:它利用电容上的初始电荷再分配完成二进制搜索算法,因此功耗一般比较小,而且不需要额外 ...