大数据 | 分布式文件系统 HDFS
HDFS 的特点与应用场景
适合存储大文件
容错性高
适用于流式的数据访问
适用于读多写少场景
HDFS的相关概念
数据块(Block)
NameNode和DataNode
Secondary NameNode
块缓存
HDFS 架构
机架感知和副本机制
读写流程
读操作
- 客户端通过调用 FileSystem 对象的 open() 方法来打开希望读取的文件,对于 HDFS 来说,这个对象是分布式文件系统的一个实例;
- DistributedFileSystem 通过RPC 调用 NameNode 以确定文件起始块的位置,由于存在多个副本,因此Namenode会返回同一个Block的多个文件的位置,然后根据集群拓扑结构排序,就近取;
- 前两步会返回一个 FSDataInputStream 对象,该对象会被封装成 DFSInputStream 对象,DFSInputStream 可以方便的管理 datanode 和 namenode 数据流,客户端对这个输入流调用 read() 方法;
- 存储着文件起始块的 DataNode 地址的 DFSInputStream 随即连接距离最近的 DataNode,通过对数据流反复调用 read() 方法,可以将数据从 DataNode 传输到客户端;
- 到达块的末端时,DFSInputStream 会关闭与该 DataNode 的连接,然后寻找下一个块的最佳 DataNode,这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流;
- 一旦客户端完成读取,就对 FSDataInputStream 调用 close() 方法关闭文件读取。
写操作
- 客户端通过调用 DistributedFileSystem 的 create() 方法创建新文件;
- DistributedFileSystem 通过 RPC 调用 NameNode 去创建一个没有 Blocks 关联的新文件,创建前 NameNode 会做各种校验,比如文件是否存在、客户端有无权限去创建等。如果校验通过,NameNode 会为创建新文件记录一条记录,否则就会抛出 IO 异常;
- 前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装成 DFSOutputStream,DFSOutputStream 可以协调 NameNode 和 Datanode。客户端开始写数据到 DFSOutputStream,DFSOutputStream 会把数据切成一个个小的数据包,并写入内部队列称为“数据队列”(Data Queue);
- DataStreamer 会去处理接受 Data Queue,它先问询 NameNode 这个新的 Block 最适合存储在哪几个 DataNode 里,比如重复数是 3,那么就找到 3 个最适合的 DataNode,把他们排成一个 pipeline。DataStreamer 把 Packet 按队列输出到管道的第一个 Datanode 中,第一个 DataNode 又把 Packet 输出到第二个 DataNode 中,以此类推;
- DFSOutputStream 还有一个队列叫 Ack Quene,也是由 Packet 组成,等待 DataNode 的收到响应,当 Pipeline 中的所有 DataNode 都表示已经收到的时候,这时 Akc Quene 才会把对应的 Packet 包移除掉;
- 客户端完成写数据后调用 close() 方法关闭写入流;
- DataStreamer 把剩余的包都刷到 Pipeline 里然后等待 Ack 信息,收到最后一个 Ack 后,通知 NameNode 把文件标示为已完成。
总结
大数据 | 分布式文件系统 HDFS的更多相关文章
- 大数据 --> 分布式文件系统HDFS的工作原理
分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数 ...
- 大数据 | 分布式文件系统HDFS 练习
本次作业来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3292 利用Shell命令与HDFS进行交互 以”./bin/dfs ...
- 大数据技术原理与应用——分布式文件系统HDFS
分布式文件系统概述 相对于传统的本地文件系统而言,分布式文件系统(Distribute File System)是一种通过网络实现文件在多台主机上进行分布式存储的文件系统.分布式文件系统的设计一般采用 ...
- Hadoop分布式文件系统--HDFS结构分析
转自:http://blog.csdn.net/androidlushangderen/article/details/47377543 HDFS系列:http://blog.csdn.net/And ...
- 【转载】Hadoop分布式文件系统HDFS的工作原理详述
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...
- 大数据篇:HDFS
HDFS HDFS是什么? Hadoop分布式文件系统(HDFS)是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File Syste ...
- 你想了解的分布式文件系统HDFS,看这一篇就够了
1.分布式文件系统 计算机集群结构 分布式文件系统把文件分布存储到多个节点(计算机)上,成千上万的计算机节点构成计算机集群. 分布式文件系统使用的计算机集群,其配置都是由普通硬件构成的,与用多个处理器 ...
- Hadoop第三天---分布式文件系统HDFS(大数据存储实战)
1.开机启动Hadoop,输入命令: 检查相关进程的启动情况: 2.对Hadoop集群做一个测试: 可以看到新建的test1.txt和test2.txt已经成功地拷贝到节点上(伪分布式只有一个节 ...
- 大数据技术 - 分布式文件系统 HDFS 的设计
本章内容介绍下 Hadoop 自带的分布式文件系统,HDFS 即 Hadoop Distributed Filesystem.HDFS 能够存储超大文件,可以部署在廉价的服务器上,适合一次写入多次读取 ...
随机推荐
- PECcpu2006中执行单个测试程序的方法
PECcpu2006中执行单个测试程序的方法 2010-12-30 11:44:00 maray 阅读数 10055更多 分类专栏: 科学理论 版权声明:本文为博主原创文章,遵循CC 4.0 BY ...
- ceph总结复习
一.ceph概念 Ceph是一种为优秀的性能.可靠性和可扩展性而设计的统一的.分布式文件系统.ceph 的统一体现在可以提供文件系统.块存储和对象存储,分布式体现在可以动态扩展. 什么是块存储/对象存 ...
- 那些天,shell脚本中曾经踩过的坑
前些天,需要实现一个需求,用脚本轮流kill服务器上的进程,观察内存变化情况,并写日志.脚本逻辑不难,但shell脚本好久不用,看过书里的语法都忘得差不多了,中间踩了不少的坑,特此记录一下,留作后续参 ...
- shell基础之pxe批量部署
通过安装及配置DHCP,tftp-server,xinetd,httpd,syslinux来实现批量安装Linux系统 #!/bin/bash #检查环境 se_state=`getenforce` ...
- STM32的VDD与VDDA
http://bbs.21ic.com/icview-1651072-1-1.html VDD VSS 就是平常的电源与地.后面带A的都是模拟量的电源.
- Spring AOP开发时如何得到某个方法内调用的方法的代理对象?
Spring AOP开发时如何得到某个方法内调用的方法的代理对象? 问题阅读起来拗口,看代码 在方法中调用其他方法很常见,也经常使用,如果在一个方法内部调用其他方法,比如 public class U ...
- ZooKeeper学习笔记一:集群搭建
作者:Grey 原文地址:ZooKeeper学习笔记一:集群搭建 说明 单机版的zk安装和运行参考:https://zookeeper.apache.org/doc/r3.6.3/zookeeperS ...
- Spring的controller接受Date类型数据,接受枚举类型数据
1. Controller接收Date类型的数据 核心使用@DateTimeFormat(pattern = "yyyy-MM-dd HH:mm:ss") 来将传递过来的时间字符串 ...
- TVM性能评估分析(二)
TVM性能评估分析(二) Figure 1. A bird's eye view of the µTVM + AutoTVM infrastructure Figure 2. A standard ...
- h265player开发
h265player开发 https://github.com/goldvideo/h265player 简介 随着视频编码技术的发展,相比H.264, H.265同等画质体积仅为一半.带宽占用省一半 ...