[CSP-S2021] 廊桥分配
链接:
题意:
有 \(m_1\) 架飞机和 \(m_2\) 架飞机停在两个机场,每架飞机有到达和离开的时间,要将 \(n\) 个廊桥分给两个机场,每个廊桥同一时刻只能停一架飞机,需要最大化能够停在这 \(n\) 个廊桥的飞机数量。
分析:
一个容易想到的思路是算出每个机场有 \(i\) 个廊桥时能够停下的飞机数量,最后 \(O(n)\) 比较一遍。我们思考可以想到一个性质,就是对于每架飞机,它所能停靠的编号最小的廊桥是一定的,也就是说,不管分配了多少廊桥,每架飞机该在哪个廊桥停就一定会在哪个廊桥停,只是廊桥数量不足时会表现为停不了。
考虑一下会发现这个东西很对,所以我们先求出每架飞机所能停靠的编号最小的廊桥。
对于每架飞机,只需要找到当前空闲的廊桥中编号最小的,可以用一个优先队列维护。
同时还要维护停有飞机的廊桥,因为要维护一个飞机到达时哪些廊桥会变空,同样使用优先队列。
算法:
先把飞机按到达时间排序,然后用两个优先队列维护空着的廊桥和非空的廊桥,得到每个飞机所能停靠的编号最小的廊桥,然后做一个前缀和就能得到每个机场有 \(i\) 个廊桥时能够停下的飞机数量,最后得到答案。
代码:
#include<bits/stdc++.h>
using namespace std;
#define mkp make_pair
#define int long long
#define in read()
inline int read(){
int p=0,f=1;
char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){p=p*10+c-'0';c=getchar();}
return p*f;
}
const int N=1e5+5;
int n,m1,m2,ans1[N],ans2[N],ans;
struct plane{int x,y;}a[N],b[N];
bool cmp(plane x,plane y){return x.x<y.x;}
priority_queue<pair<int,int> >q;//非空
priority_queue<int>p;//空
signed main(){
freopen("airport.in","r",stdin);
freopen("airport.out","w",stdout);
n=in,m1=in,m2=in;
for(int i=1;i<=m1;i++)
a[i].x=in,a[i].y=in;
for(int i=1;i<=m2;i++)
b[i].x=in,b[i].y=in;
sort(a+1,a+1+m1,cmp);
sort(b+1,b+1+m2,cmp);
for(int i=1;i<=n;i++)p.push(-i);
for(int i=1;i<=m1;i++){
int s=a[i].x,t=a[i].y;
while(!q.empty()&&-q.top().first<s){p.push(-q.top().second);q.pop();}
if(!p.empty()){int tp=-p.top();q.push(mkp(-t,tp));ans1[tp]++;p.pop();}
}
while(!q.empty())q.pop();
while(!p.empty())p.pop();
for(int i=1;i<=n;i++)p.push(-i);
for(int i=1;i<=m2;i++){
int s=b[i].x,t=b[i].y;
while(!q.empty()&&-q.top().first<s){p.push(-q.top().second);q.pop();}
if(!p.empty()){int tp=-p.top();q.push(mkp(-t,tp));ans2[tp]++;p.pop();}
}
for(int i=1;i<=n;i++)
ans1[i]+=ans1[i-1],
ans2[i]+=ans2[i-1];
for(int i=0;i<=n;i++)
ans=max(ans,ans1[i]+ans2[n-i]);
cout<<ans;
return 0;
}
题外话:
不算很难,实现也很简单,可惜了
三分是错解,因为只有一个严格单增加一个严格单减才是单峰。要构造卡三分的数据非常简单。
[CSP-S2021] 廊桥分配的更多相关文章
- [CSP-S 2021] 廊桥分配 题解
写篇题解来纪念我炸掉的CSP 唯一会做的题代码写挂了(痛苦面具 思路 我看到这道题第一眼想到的是线段树,感觉可以用线段树维护飞机入站到出战的这段时间,想了半天想不到代码怎么写. 国内机场与国外机场要分 ...
- csp-s 2021
T1 廊桥分配 当一架飞机抵达机场时,可以停靠在航站楼旁的廊桥,也可以停靠在位于机场边缘的远机位. 乘客一般更期待停靠在廊桥,因为这样省去了坐摆渡车前往航站楼的周折. 然而,因为廊桥的数量有限,所以这 ...
- 【做题笔记】CSP-S 往年试题
题单 本文章正在持续更新-- [2021] 廊桥分配 题目 题面描述 所有飞机分为两类--国内区和国际区,两区廊桥数量互不干扰.每架飞机遵循"先到先得"的原则,优先选择编号最小的廊 ...
- CSP-J/S 2021 游记
\(\large\texttt{Day -1}\) 晚上好累啊,去集训了,回来之后发现十一点了还码了一会儿,只能祈求上帝明天不会打瞌睡. \(\large\texttt{Day 0}\) 意料中的事情 ...
- CSP 2021 总结
CSP 2021 总结 PJ 开题顺序:1342 应该先做 T2 ,导致我 T2 直接看错 T1.T3 T1 :直接推规律即可,考场的想法应该正确 T3 :好家伙直接 map 走起 T2 最崩溃的来了 ...
- CSP-S游记
第三次考csp-s了,希望这次不要二等 Day ?(初赛) 之前校内模拟赛平均下来都在班级中游,所以不求高分但是觉得过没问题(事实好像确实如此 先开题,选择题很水秒了(devinNB猜到了考Linux ...
- SAP成都研究院飞机哥:程序猿和飞机的不解之缘
今天的文章来自Jerry的老同事张航. 张航和Jerry一样于2007年毕业后加入SAP成都研究院工作至今.进入SAP后的第一个开发部门是SAP Business by Design Infrastr ...
- CSP-S 2021 遗言
感谢€€£,谢谢宁嘞! 第一题,€€£给了很多限制条件,什么"先到先得"."只有一个跑道",让它看起来很好做,然后来骗,来偷袭,广大"消费者" ...
- 【CSP模拟赛】Freda的迷宫(桥)
题目描述 Freda是一个迷宫爱好者,她利用业余时间建造了许多迷宫.每个迷宫都是由若干房间和走廊构成的,每条走廊都连接着两个不同的房间,两个房间之间最多只有一条走廊直接相连,走廊都是双向通过. 黄昏 ...
随机推荐
- 边缘使用 K8s 门槛太高?OpenYurt 这个功能帮你快速搭建集群!
OpenYurt作为阿里巴巴首个开源的边缘云原生项目,涉及到边缘计算和云原生两个领域.然而,许多边缘计算的开发者并不熟悉云原生相关的知识.为了降低 OpenYurt 的使用门槛,帮助更多地开发者快速上 ...
- python中reduce filter map lambda函数
lambda函数 python 使用 lambda 来创建匿名函数,lambda返回值是一个函数的地址,也就是函数对象. 语法:lambda [arg1 [,arg2,.....argn]]:expr ...
- 动态规划精讲(一)LC最长公共子序列
P1439 [模板]最长公共子序列 题目描述 给出1,2,-,n 的两个排列P1 和P2 ,求它们的最长公共子序列. 输入格式 第一行是一个数 n. 接下来两行,每行为 n 个数,为自然数 1,2 ...
- PHP中的PDO操作学习(二)预处理语句及事务
今天这篇文章,我们来简单的学习一下 PDO 中的预处理语句以及事务的使用,它们都是在 PDO 对象下的操作,而且并不复杂,简单的应用都能很容易地实现.只不过大部分情况下,大家都在使用框架,手写的机会非 ...
- 启动jemeter 报错相关解决方案
1:当启动jemeter时报错"页面文件太小,无法完成操作" 如图: 是说明分配的内容不足,即可调整内存重启即可解决 1):打开:控制面板>系统和安全>系统 2):点击 ...
- lua文件修改为二进制文件
注意:lua编译跟luajit编译的二进制文件是不兼容,不能运行的 如果是使用luajit,请直接使用luajit直接编译二进制 第一种:luajit编译(以openresty为例,跟luac是相反的 ...
- YbtOJ#723-欧拉之树【莫比乌斯反演,虚树】
正题 题目链接:http://www.ybtoj.com.cn/contest/121/problem/2 题目大意 给出\(n\)个点的一棵树,每个点有一个权值\(a_i\),求 \[\sum_{i ...
- Spring Security 学习+实践
Spring Security是Spring为解决应用安全所提供的一个全面的安全性解决方案.基于Spring AOP和Servlet过滤器,启动时在Spring上下文中注入了一组安全应用的Bean,并 ...
- IP多播与NAT地址转化
IP多播 与单播相比,在一对多的通信中,多播可以大大减少网络资源.在互联网上进行多播就叫做IP多播,IP多播所传送的分组需要使用IP多播地址. 如果某台主机想要收到某个特定的多播分组,那么怎样才能是这 ...
- 使用 WPF + Chrome 内核实现 在线客服系统 的复合客服端程序
本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 免费使用 & 私有化部署免费下载:https://docs.sh ...