[火星补锅] siano 神奇的线段树
前言:
本来以为很难打的,没想到主干一次就打对了,然而把输入的b和d弄混了,这sb错误调了两个小时。。。
解析:
神奇的线段树。注意到有一个性质,无论怎么割草,生长速度快的一定不会比生长速度慢的矮。因此可以先排个序,然后就可以用线段树维护了。
首先维护区间的sum,这个很显然。
然后会发现一个问题,每次割草时,不知道从哪里开始割。这时可以运用线段树上二分的思想,维护一个区间max,每次只要查询区间中第一个大于上限的位置即可。
还有区间赋值和区间加的标记,这个就是细节问题了。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=500000+10;
#define gc() (p1 == p2 ? (p2 = buf + fread(p1 = buf, 1, 1 << 20, stdin), p1 == p2 ? EOF : *p1++) : *p1++)
#define read() ({ register int x = 0, f = 1; register char c = gc(); while(c < '0' || c > '9') { if (c == '-') f = -1; c = gc();} while(c >= '0' && c <= '9') x = x * 10 + (c & 15), c = gc(); f * x; })
char buf[1 << 20], *p1, *p2;
int n,m;
ll sum[maxn];
ll b,d,last,ans;
int a[maxn];
struct Segment_tree{
ll sum,lazyfz,max,lazyadd;
}tree[maxn<<2];
bool cmp(int x,int y){
return x<y;
}
void build(int rt,int l,int r){
tree[rt].lazyfz=-1;
if(l==r) return;
int mid=(l+r)>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
}
void update(int rt,int l,int r,ll x){
tree[rt].sum=x*(r-l+1);
tree[rt].max=x;
tree[rt].lazyfz=x;
tree[rt].lazyadd=0;
}
void updateadd(int rt,int l,int r,ll x){
tree[rt].sum+=x*(sum[r]-sum[l-1]);
tree[rt].max+=x*a[r];
tree[rt].lazyadd+=x;
}
void pushdown(int rt,int l,int r){
int mid=(l+r)>>1;
if(tree[rt].lazyfz!=-1){
update(rt<<1,l,mid,tree[rt].lazyfz);
update(rt<<1|1,mid+1,r,tree[rt].lazyfz);
tree[rt].lazyfz=-1;
}
if(tree[rt].lazyadd){
updateadd(rt<<1,l,mid,tree[rt].lazyadd);
updateadd(rt<<1|1,mid+1,r,tree[rt].lazyadd);
tree[rt].lazyadd=0;
}
}
void mm(ll x){
pushdown(1,1,n);
updateadd(1,1,n,x);
}
int query(int rt,int l,int r,int s,int t,ll x){//查找第一个大于x的数,如果没有,返回-1;
if(l==r) return tree[rt].max>x ? l : -1 ;
if(tree[rt].max<=x) return -1;
pushdown(rt,l,r);
int mid=(l+r)>>1;
if(t<=mid) return query(rt<<1,l,mid,s,t,x);
if(s>mid) return query(rt<<1|1,mid+1,r,s,t,x);
int res=query(rt<<1,l,mid,s,t,x);
if(res!=-1) return res;
return query(rt<<1|1,mid+1,r,s,t,x);
}
ll querysum(int rt,int l,int r,int s,int t){
if(s<=l&&r<=t) return tree[rt].sum;
int mid=(l+r)>>1;
pushdown(rt,l,r);
if(t<=mid) return querysum(rt<<1,l,mid,s,t);
if(s>mid) return querysum(rt<<1|1,mid+1,r,s,t);
return querysum(rt<<1,l,mid,s,t)+querysum(rt<<1|1,mid+1,r,s,t);
}
void pushup(int rt){
tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;
tree[rt].max=max(tree[rt<<1].max,tree[rt<<1|1].max);
}
void modify(int rt,int l,int r,int s,int t,ll x){
if(s<=l&&r<=t){
update(rt,l,r,x);
return;
}
int mid=(l+r)>>1;
pushdown(rt,l,r);
if(s<=mid) modify(rt<<1,l,mid,s,t,x);
if(t>mid) modify(rt<<1|1,mid+1,r,s,t,x);
pushup(rt);
}
void Solve(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;++i) sum[i]=sum[i-1]+a[i];
build(1,1,n);
for(int i=1;i<=m;++i){
scanf("%lld%lld",&b,&d);
mm(b-last);
last=b;
int x=query(1,1,n,1,n,d);
if(x!=-1){
ans=querysum(1,1,n,x,n);
ans-=d*(n-x+1);
modify(1,1,n,x,n,d);
}else ans=0;
printf("%lld\n",ans);
}
}
int main(){
Solve();
return 0;
}
[火星补锅] siano 神奇的线段树的更多相关文章
- [火星补锅] 水题大战Vol.2 T1 && luogu P1904 天际线 题解 (线段树)
前言: 当时考场上并没有想出来...后来也是看了题解才明白 解析: 大家(除了我)都知道,奇点和偶点会成对出现,而出现的前提就是建筑的高度突然发生变化.(这个性质挺重要的,我之前没看出来) 所以就可以 ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解
前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...
- CodeForces-213E:Two Permutations(神奇的线段树+hash)
Rubik is very keen on number permutations. A permutation a with length n is a sequence, consisting o ...
- [火星补锅] 水题大战Vol.2 T2 && luogu P3623 [APIO2008]免费道路 题解
前言: 如果我自己写的话,或许能想出来正解,但是多半会因为整不出正确性而弃掉. 解析: 这题算是对Kruskal的熟练运用吧. 要求一颗生成树.也就是说,最后的边数是确定的. 首先我们容易想到一个策略 ...
- [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解
前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...
- HDU 1823 Luck and Love(二维线段树)
之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...
- [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】
题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...
- BZOJ3711 PA2014Druzyny(动态规划+cdq分治+线段树)
显然可以dp:设f[i]为前i个人最多能分多少组,则f[i]=max{f[j]}+1 (cmax<=i-j<=dmin). 容易发现d的限制是一段连续区间,二分或者随便怎么搞都行.c则有点 ...
- 普及向 ZKW线段树!
啊,是否疲倦了现在的线段树 太弱,还递归! 那我们就欢乐的学习另外一种神奇的线段树吧!(雾 他叫做zkw线段树 这个数据结构灰常好写(虽然线段树本身也特别好写……) 速度快(貌似只在单点更新方面比 ...
随机推荐
- LVS负载均衡集群--DR模式部署
目录: 一.LVS-DR数据包流向分析 二.DR 模式的特点 三.LVS-DR中的ARP问题 四.DR模式 LVS负载均衡群集部署 一.LVS-DR数据包流向分析 1.为方便进行原理分析,将clien ...
- split文件切片
文件上传下载过程中经常会遇到网络不稳定,或者传输软件限制传输的文件大小之类的问题.在当今换没有出现很好的软件的时候,一个available方法是将大文件切片,也就是 切成小文件,然后通过其他方法put ...
- ThinkCMF5.1主要特性
更改框架协议为MIT,让你更自由地飞 基于ThinkPHP 5.1重构,但核心代码兼容5.0版本,保证老用户最小升级成本 增加对swoole支持,同时支持swoole协程和全同步模式(请单独安装扩展) ...
- git介绍-常用操作(一)
Table of Contents 1 系列文章 2 git说明 3 git常用命令 3.1 基本操作 3.2 远程操作 4 查看git的配置 4.1 查看已配置项 4.2 其他配置 ...
- 合并区间 leetcode
描述: 给出一组区间,请合并所有重叠的区间. 请保证合并后的区间按区间起点升序排列. 输入: [[10,30],[20,60],[80,100],[150,180]] 输出: [[10,60],[80 ...
- 异步servlet的原理探究
异步servlet是servlet3.0开始支持的,对于单次访问来讲,同步的servlet相比异步的servlet在响应时长上并不会带来变化(这也是常见的误区之一),但对于高并发的服务而言异步serv ...
- Jmeter系列(11)- 自动化压力测试逻辑思路及例子
为什么需要进行自动化压力测试 手动逐步加压,需要人工改变并发数,还要等待.所有,我们完全可以制定好策略,让程序自动加压,自动等待,输出报告 实现思路 Jmeter脚本(.jmx文件)- 压测逻辑 Sh ...
- python 文件夹扫描
扫描指定文件夹下的文件.或者匹配指定后缀和前缀的函数. 假设要扫描指定文件夹下的文件,包含子文件夹,调用scan_files("/export/home/test/") 假设要扫描 ...
- PHP统计当前网站的访问人数,访问信息,被多少次访问。
<?php header('Content-type:text/html;charset=utf-8'); //统计流量(人数,访问次数,用户IP) //假设用户访问,得到IP地址 $remo ...
- 【译】.NET Core 3.0 发布小尺寸 self-contained 单体可执行程序
.NET Core 提供的发布应用程序选项 self-contained 是共享应用程序的好方法,因为应用程序的发布目录包含所有组件.运行时和框架.您只需要告诉使用者应用程序的入口 exe 文件,就可 ...