原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html

题目传送门 - ARC102E

题意

  有 $n$ 个取值为 $[1,k]$ 的骰子,对于每一个 $i(i\in [2,2k])$ ,输出满足“任意两个骰子的值的和不为 $i$ ”的情况总数。

  $1\leq n,k\leq 2000$

题解

  扯淡还是要先撤的。比赛的时候被 D 题续了好久, E 题差一句话就调出来了。如果赛后与 Functionendless 交流完 D 题,回来检查这题,然后检查了 2 分钟就发现了错误…… QAQ

  首先考虑求解其中一个 $i$:

  如果 $i$ 为 奇数 : 那么,显然,对于所有 $x(x\leq \frac{i-1}2)$  , $i-x\neq x$ ,且所有骰子的取值中只可能出现 $x$ 或者 $i-x$ ,当然也有可能两种都不出现,我们称这样的一对数为一对“互斥数对”。显然知道 $i$ 和 $k$ 之后,互斥数对的种数很容易知道,设为 $lim$ 。于是我们枚举一下选择几个互斥数对,假设我们选择了 $j$ 种互斥数对:那么,首先是在所有的互斥数对里选择 $j$ 个数对,方案数为 $\binom{lim}{j}$;然后,对于每一种出现的互斥数对,都可以选择其中一种数让他出现,故有 $2^j$ 种,这样子相当于已经至少选择了 $j$ 个数,故我们还要放 $n-j$ 个数字,我们有 $k-lim+j$ 种数字可供任意选择。于是问题被转化成了在 $k-lim+j$ 个带标号的位置放上非负整数,使得所有位置的数之和为 $n-j$ 的方案数。这个东西直接用 插板法 搞成组合数就可以了。

  如果 $i$ 为 偶数 :那么显然出现了一种特殊情况: $2x=i$ ,于是 $x$ 这个数最多只能出现。于是我们直接分这个数字出现和不出现两种情况,问题就被转化成了两个 $i$ 为奇数时的问题了。详见代码。

  通过预处理组合数和预处理 $2$ 的幂,我们可以在大约 $O(n^2+nk)$ 的时间复杂度内通过此题。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=4005,mod=998244353;
int n,k,C[N][N],pw2[N];
int c(int n,int m){
if (m>n||m<0)
return 0;
return C[n][m];
}
int calc(int m,int n){return c(n+m-1,m-1);}
int Get(int v,int n,int k){
int ans=0;
int lim=max(0,v/2-max(0,v-1-k));
for (int i=0;i<=lim;i++)
ans=(1LL*pw2[i]*C[lim][i]%mod*calc(k-lim*2+i,n-i)+ans)%mod;
return ans;
}
int main(){
pw2[0]=1;
for (int i=1;i<N;i++)
pw2[i]=pw2[i-1]*2%mod;
for (int i=0;i<N;i++)
C[i][0]=C[i][i]=1;
for (int i=1;i<N;i++)
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
scanf("%d%d",&k,&n);
for (int i=2;i<=2*k;i++)
if (i&1)
printf("%d\n",Get(i,n,k));
else
printf("%d\n",(Get(i-1,n,k-1)+Get(i-1,n-1,k-1))%mod);
return 0;
}

  

AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合的更多相关文章

  1. AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...

  2. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  3. AtCoder Regular Contest 102 E Stop. Otherwise...

    题目链接:atcoder 大意:有\(n\)个骰子,每个骰子上面有\(k\)个数,分别是\(1\text ~ k\),现在求\(\forall i\in[2...2k]\),求出有多少种骰子点数的组合 ...

  4. AtCoder Regular Contest 102 D - All Your Paths are Different Lengths

    D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...

  5. 2018.09.02 Atcoder Regular Contest 102简要题解

    比赛传送门 T1 Triangular Relationship 分析之后发现有两种情况: 1. n为奇数,那么所有数都是k的倍数. 2. n为偶数,那么所有数都是k/2的倍数. 然后就可以愉快A题了 ...

  6. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  7. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  8. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

随机推荐

  1. MS SQL Server 增删改查

    数据插入 语法:INSERT INTO Table_name(field1,field2……fieldN) values(value1,vlaue2,…valueN) 单行插入用户类型 INSERT ...

  2. VUE 多页面配置(一)

    1. 概述 1.1 说明 项目开发过程中会遇到需要多个主页展示情况,故在vue单页面的基础上进行配置多页面开发以满足此需求. 2. 实例 2.1 页面配置 2.1.1 默认首页 使用vue脚手架搭建后 ...

  3. Linux Oracle bash: “sqlplus / as sysdba”: command not found 解决方法

    bash: sqlplus: command not found 解决方法 注:本文来源于 <   bash: sqlplus: command not found 解决方法   > 1: ...

  4. [原著]java或者Js 代码逻辑来处理 突破 oracle sql “IN”长度的极限的问题

    注:本文出自:博主自己研究验证可行   [原著]java或者Js  代码逻辑来处理  突破 oracle  sql "IN"长度的极限的问题    在很多的时候 使用 select ...

  5. Python基础之面向对象进阶一

    一.isinstance(obj,cls)和issubclass(sub,super) 1.isinstance(obj,cls)检查obj是否是类 cls 的对象 class A: pass obj ...

  6. babel-cli 的使用

    1.安装babel-cli npm i babel-cli -D 2.实现npm的初始化 npm init -y 3.配置package.json { "name": " ...

  7. Linux基础三:linux目录结构和目录文件的浏览、管理及维护

    目录文件的浏览.管理及维护(一) 1.Linux文件系统的层次结构 1)Linux文件系统的树状结构:在Linux或UNIX操作系统中,所有的文件和目录都被组织成一个以根节点开始的倒置的树状结构. 2 ...

  8. Canvas锯齿问题

    canvas的宽高必须通过HTML属性指定,不能通过CSS指定,否则会有锯齿 这个是通过CSS定义宽高,绘制的图形 #myCanvas{ background: black; height: 800p ...

  9. 饮冰三年-人工智能-linux-07 硬盘分区、格式化及文件系统的管理

    先给虚拟机添加一个硬盘 通过fdisk -l sdb,查看磁盘内容 通过fdisk /sdb 来操作分区 创建一个新分区 创建第二个分区 创建第三个分区 创建扩展分区 再次创建分区,其实使用的是扩展分 ...

  10. C#通讯录——Windows Form Contact List

    C#通讯录 Windows Form Contact List 主窗口 using System; using System.Collections.Generic; using System.Com ...