UOJ370 滑稽树上滑稽果 【状压DP】
题目分析:
答案肯定是链,否则可以把枝干放到主干。
去除一直存在的位,这样0位占满时就会结束。
用$f[S]$表示0位填埋情况,每次转移是它的一个子集,我们考虑可否转移。
再用$g[S]$存储转移是否合法,用滑稽果填充$g$数组。不一定要完全满足条件,因为有其它方案更优,无影响。
代码:
#include<bits/stdc++.h>
using namespace std; #define RI register const int maxn = ; int n,a[maxn],bit=,maxx;
long long ans = ;
int cnt = (<<)-,res=; int f[<<];
int g[<<],vol[<<];
char buffer[], *buf=buffer;
inline void in(int &x) {
while(*buf>'' || *buf<'') ++buf;
for(x=;*buf>=''&&*buf<=''; ++buf) x=x*+*buf-'';
} inline void read(){
in(n);
for(RI int i=;i<=n;i++) in(a[i]),cnt &= a[i];
for(RI int i=;i<=n;i++) a[i] -= cnt,maxx=max(maxx,a[i]),res |= a[i];
ans += 1ll*cnt*n;
} inline void init(){
while((bit<<)<=maxx)bit<<=; bit<<=; res = (bit--res);
for(RI int i=;i<=n;i++) vol[bit--a[i]]=;
for(RI int i=bit-;i>=;i--){
if(!vol[i] || g[i]) continue;
for(RI int j=i;j;j=((j-)&i)){g[j]=;}
}
} inline void work(){
memset(f,0x3f,sizeof(f)); f[] = ;
for(RI int now=;now<bit;now++){
if(f[now] > 1e6) continue;
int dt = bit--now;
for(RI int i=dt;i;i=((i-)&dt)){
if(g[i]){f[now+i] = min(f[now+i],f[now]+bit--(now+i));};
}
}
ans += f[bit-];
printf("%lld",ans);
} int main(){
fread(buffer, , (sizeof buffer)-, stdin);
read();
init();
work();
return ;
}
UOJ370 滑稽树上滑稽果 【状压DP】的更多相关文章
- U68464 滑稽树上滑稽果(guo)
U68464 滑稽树上滑稽果(guo) 题目描述 小小迪有 n 个约会对象,每个对象有一个约会时长 p[i],小小迪 想尽可能多的去完成他的约会(假设小小迪可以瞬移),每个对象还有 一个忍耐时间 q[ ...
- 多米诺骨牌放置问题(状压DP)
例题: 最近小A遇到了一个很有趣的问题: 现在有一个\(n\times m\)规格的桌面,我们希望用\(1 \times 2\)规格的多米诺骨牌将其覆盖. 例如,对于一个\(10 \times 11\ ...
- CCPC-Wannafly Winter Camp Day3 Div1 - 精简改良 - [生成树][状压DP]
题目链接:https://zhixincode.com/contest/14/problem/D?problem_id=206 样例输入 1 5 5 1 2 1 1 3 1 2 4 1 2 5 1 ...
- 刷题总结——树有几多愁(51nod1673 虚树+状压dp+贪心)
题目: lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输 ...
- [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)
[多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...
- 状态压缩动态规划(状压DP)详解
0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...
- HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解
题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
随机推荐
- Mac无法清倒废纸篓,终极解决方案
打开终端 输入 sudo -s rm -rf 你的文件路径 回车即可成功删除
- Vs2017_创建项目引用Core2.2报错找不到
错误: 解决方案: 这个勾一定要画上
- 接口自动化框架(Pytest+request+Allure)
前言: 接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱. 接口自动化包含2个部分,功能性的接口自动化测试和并发接口自动化测试. 本次文章着重介绍第一种, ...
- linux-高并发与负载均衡-TCP-IP基础知识
ARP协议: ping baidu
- Python-Django下载与基本命令
1.下载Django: pip3 install django 2.创建一个django project django-admin.py startproject mysite 当前目录下会生成mys ...
- Python学习之赋值列表
# the program aim to differentiate the defference of a=b or a=b[:] my_fruits=["apple",&quo ...
- [2017BUAA软工助教]案例分析小结
BUAA案例分析小结 一.作业要求 http://www.cnblogs.com/jiel/p/7631784.html 二.统计数据 总人数 神策数据 博客园博客 必应词典 30 1 12 17 三 ...
- Java 集合的简单理解
集合(容器) Java的集合类分别是Collection接口和Map接口派生而来. Collection接口 对于实现Collection接口的子类,都会实现Collection接口中抽象方法,所以他 ...
- MySQL之优化
当 MySQL 单表记录数过大时,增删改查性能都会急剧下降,本文会提供一些优化参考,大家可以参考以下步骤来优化. 一. 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻 ...
- oracle创建视图时一些问题
这几天创建视图的时候,遇见的问题. 一:创建视图的时候Oracle-报错:文字与格式字符串不匹配(ORA-01861) 我创建的时候用的 是to_date 然后我改成了to_char select X ...