Semi-prime H-numbers POJ - 3292 打表(算复杂度)
题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537
一个H-number是所有的模四余一的数。
如果一个H-number是H-primes 当且仅当它的因数只有1和它本身(除1外)。
一个H-number是H-semi-prime当且仅当它只由两个H-primes的乘积表示。
H-number剩下其他的数均为H-composite。
给你一个数h,问1到h有多少个H-semi-prime数。
思路 :直接暴力打表 因为h <=1e6 而 打表的复杂度是 log4(h)*log4(h)所以 不会超时 不要误以为是n^2的复杂度
- #include<cstdio>
- #include<cstring>
- #include<vector>
- #include<cmath>
- #include<iostream>
- using namespace std;
- const int maxn=1e6+;
- int H_primes[maxn+];
- int vis[maxn+];
- int ans[maxn];
- int cnt;
- void init(){
- cnt=;
- for(int i=;i<=maxn;i+=){
- for(int j=;j<=maxn;j+=){
- int mul=i*j;
- if(mul>maxn)break;
- if(H_primes[i]==&&H_primes[j]==)
- H_primes[mul]=;
- else H_primes[mul]=-;
- }
- }
- for(int k=;k<=maxn;k++){
- if(H_primes[k]==)
- cnt++;
- ans[k]=cnt;
- }
- }
- int main(){
- init();
- int n;
- while(scanf("%d",&n)==&&n){
- printf("%d %d\n",n,ans[n]);
- }
- return ;
- }
Semi-prime H-numbers POJ - 3292 打表(算复杂度)的更多相关文章
- 【POJ 3292】 Semi-prime H-numbers
[POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...
- POJ 3292 Semi-prime H-numbers (素数筛法变形)
题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...
- POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19895 ...
- POJ 2739 Sum of Consecutive Prime Numbers【素数打表】
解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS Memo ...
- Sum of Consecutive Prime Numbers(素数打表+尺取)
Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...
- UVA1210Sum of Consecutive Prime Numbers(素数打表 + 连续和)
题目链接 题意:输入一个数n (2 <= n <= 10000) 有多少种方案可以把n写成若干个连续素数之和 打出10000之内的素数表,然后再打出每个可能得到的和的方案数的表 #incl ...
- Greedy:Sum of Consecutive Prime Numbers(POJ 2739)
素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...
- Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)
题意:给一个数 可以写出多少种 连续素数的合 思路:直接线性筛 筛素数 暴力找就行 (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...
- UVALive 7279 Sheldon Numbers (暴力打表)
Sheldon Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/127406#problem/H Description According t ...
随机推荐
- 面试 12:玩转 Java 快速排序
终于轮到我们排序算法中的王牌登场了. 快速排序由于排序效率在同为 O(nlogn) 的几种排序方法中效率最高,因此经常被采用.再加上快速排序思想——分治法也确实非常实用,所以 在各大厂的面试习题中,快 ...
- vue及Eelement使用过程中遇到的一些问题
在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...
- MyEclipse和eclipse的区别
对于新手来说,MyEclipse和eclipse来说的区别可能就是MyEclipse比eclipse多了my,MyEclipse主要为JavaEE开发,而Eclipse主要为Java开发..那么MyE ...
- 关于 pip安装的可能错误的排除
今天安装selenium总是报错(下为错误信息) C:\Python27\Scripts>pip install seleniumCollecting seleniumC:\Python27\l ...
- 【学习总结】Git学习-参考廖雪峰老师教程八-使用GitHub
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- PAT L2-007 家庭房产
https://pintia.cn/problem-sets/994805046380707840/problems/994805068539215872 给定每个人的家庭成员和其自己名下的房产,请你 ...
- asp.net core下一个简单的分页技术
在做web应用的时候免不了要对数据进行分页,我最近在做asp.net core的开发的时候就遇到了这个需求,现在简单的记录一下: public class PaginatedList<T> ...
- [转帖]CentOS 6 服务器安全配置指南(通用)
CentOS 6 服务器安全配置指南(通用) http://seanlook.com/2014/09/07/linux-security-general-settings/ 发表于 2014-09- ...
- mac下php开发环境的搭建
1.phpstorm 在官网:https://www.jetbrains.com/phpstorm/,下载最新版:phpstorm-2016.2.1 在http://15.idea.lanyus.co ...
- webpack+vue 我的视角(持续更新)
最近一直在研究webpack+vue的组合拳,现在分享一下: webpack就是一个项目管理工具,可以各种模块化加载,然后压缩,当然还有热加载技术(时灵时不灵..) vue是mv*模式的框架,组件化开 ...