题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537

一个H-number是所有的模四余一的数。

如果一个H-number是H-primes 当且仅当它的因数只有1和它本身(除1外)。

一个H-number是H-semi-prime当且仅当它只由两个H-primes的乘积表示。

H-number剩下其他的数均为H-composite。

给你一个数h,问1到h有多少个H-semi-prime数。
思路  :直接暴力打表 因为h <=1e6  而  打表的复杂度是 log4(h)*log4(h)所以 不会超时  不要误以为是n^2的复杂度

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<vector>
  4. #include<cmath>
  5. #include<iostream>
  6. using namespace std;
  7. const int maxn=1e6+;
  8. int H_primes[maxn+];
  9. int vis[maxn+];
  10. int ans[maxn];
  11. int cnt;
  12. void init(){
  13. cnt=;
  14. for(int i=;i<=maxn;i+=){
  15. for(int j=;j<=maxn;j+=){
  16. int mul=i*j;
  17. if(mul>maxn)break;
  18. if(H_primes[i]==&&H_primes[j]==)
  19. H_primes[mul]=;
  20. else H_primes[mul]=-;
  21. }
  22.  
  23. }
  24. for(int k=;k<=maxn;k++){
  25. if(H_primes[k]==)
  26. cnt++;
  27. ans[k]=cnt;
  28. }
  29. }
  30. int main(){
  31. init();
  32. int n;
  33. while(scanf("%d",&n)==&&n){
  34. printf("%d %d\n",n,ans[n]);
  35. }
  36. return ;
  37. }

Semi-prime H-numbers POJ - 3292 打表(算复杂度)的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  4. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  5. Sum of Consecutive Prime Numbers(素数打表+尺取)

    Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...

  6. UVA1210Sum of Consecutive Prime Numbers(素数打表 + 连续和)

    题目链接 题意:输入一个数n (2 <= n <= 10000) 有多少种方案可以把n写成若干个连续素数之和 打出10000之内的素数表,然后再打出每个可能得到的和的方案数的表 #incl ...

  7. Greedy:Sum of Consecutive Prime Numbers(POJ 2739)

     素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...

  8. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  9. UVALive 7279 Sheldon Numbers (暴力打表)

    Sheldon Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/127406#problem/H Description According t ...

随机推荐

  1. 面试 12:玩转 Java 快速排序

    终于轮到我们排序算法中的王牌登场了. 快速排序由于排序效率在同为 O(nlogn) 的几种排序方法中效率最高,因此经常被采用.再加上快速排序思想——分治法也确实非常实用,所以 在各大厂的面试习题中,快 ...

  2. vue及Eelement使用过程中遇到的一些问题

    在做项目的过程中,目前主要遇到了以下几个问题: 一.样式问题 1.样式中使用scoped的问题: 主要表现在从一个页面跳到另一个页面时,第二个页面的样式不能正确显示,通过刷新才能恢复页面的预定样式. ...

  3. MyEclipse和eclipse的区别

    对于新手来说,MyEclipse和eclipse来说的区别可能就是MyEclipse比eclipse多了my,MyEclipse主要为JavaEE开发,而Eclipse主要为Java开发..那么MyE ...

  4. 关于 pip安装的可能错误的排除

    今天安装selenium总是报错(下为错误信息) C:\Python27\Scripts>pip install seleniumCollecting seleniumC:\Python27\l ...

  5. 【学习总结】Git学习-参考廖雪峰老师教程八-使用GitHub

    学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...

  6. PAT L2-007 家庭房产

    https://pintia.cn/problem-sets/994805046380707840/problems/994805068539215872 给定每个人的家庭成员和其自己名下的房产,请你 ...

  7. asp.net core下一个简单的分页技术

    在做web应用的时候免不了要对数据进行分页,我最近在做asp.net core的开发的时候就遇到了这个需求,现在简单的记录一下: public class PaginatedList<T> ...

  8. [转帖]CentOS 6 服务器安全配置指南(通用)

    CentOS 6 服务器安全配置指南(通用) http://seanlook.com/2014/09/07/linux-security-general-settings/  发表于 2014-09- ...

  9. mac下php开发环境的搭建

    1.phpstorm 在官网:https://www.jetbrains.com/phpstorm/,下载最新版:phpstorm-2016.2.1 在http://15.idea.lanyus.co ...

  10. webpack+vue 我的视角(持续更新)

    最近一直在研究webpack+vue的组合拳,现在分享一下: webpack就是一个项目管理工具,可以各种模块化加载,然后压缩,当然还有热加载技术(时灵时不灵..) vue是mv*模式的框架,组件化开 ...