题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537

一个H-number是所有的模四余一的数。

如果一个H-number是H-primes 当且仅当它的因数只有1和它本身(除1外)。

一个H-number是H-semi-prime当且仅当它只由两个H-primes的乘积表示。

H-number剩下其他的数均为H-composite。

给你一个数h,问1到h有多少个H-semi-prime数。
思路  :直接暴力打表 因为h <=1e6  而  打表的复杂度是 log4(h)*log4(h)所以 不会超时  不要误以为是n^2的复杂度

 #include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<iostream>
using namespace std;
const int maxn=1e6+;
int H_primes[maxn+];
int vis[maxn+];
int ans[maxn];
int cnt;
void init(){
cnt=;
for(int i=;i<=maxn;i+=){
for(int j=;j<=maxn;j+=){
int mul=i*j;
if(mul>maxn)break;
if(H_primes[i]==&&H_primes[j]==)
H_primes[mul]=;
else H_primes[mul]=-;
} }
for(int k=;k<=maxn;k++){
if(H_primes[k]==)
cnt++;
ans[k]=cnt;
}
}
int main(){
init();
int n;
while(scanf("%d",&n)==&&n){
printf("%d %d\n",n,ans[n]);
}
return ;
}

Semi-prime H-numbers POJ - 3292 打表(算复杂度)的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  4. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  5. Sum of Consecutive Prime Numbers(素数打表+尺取)

    Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...

  6. UVA1210Sum of Consecutive Prime Numbers(素数打表 + 连续和)

    题目链接 题意:输入一个数n (2 <= n <= 10000) 有多少种方案可以把n写成若干个连续素数之和 打出10000之内的素数表,然后再打出每个可能得到的和的方案数的表 #incl ...

  7. Greedy:Sum of Consecutive Prime Numbers(POJ 2739)

     素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...

  8. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  9. UVALive 7279 Sheldon Numbers (暴力打表)

    Sheldon Numbers 题目链接: http://acm.hust.edu.cn/vjudge/contest/127406#problem/H Description According t ...

随机推荐

  1. 《React Native 精解与实战》书籍连载「React Native 底层原理」

    此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...

  2. POJ - 3244-Difference between Triplets

    其实我最开始没有这道题...是做到UPC-11079-小P的决斗,训练结束后然后搜索了一波,才了解这个题的. 非常牛逼的题...这么多人做出来了...我好菜... 对于每对三元组Ta=(La,Ja,K ...

  3. HDU - 1540 线段树的合并

    这个题题意我大概解释一下,就是一开始一条直线,上面的点全是联通的,有三种操作 1.操作D把从左往右第x个村庄摧毁,然后断开两边的联通. 2.询问Q节点相联通的最长长度 3.把最后破坏的村庄重建. 这个 ...

  4. c++入门之类——进一步剖析

    通常的,关于一个类,包含了下面几个方面: 1  声明类成员和接口:2 定义类接口函数(方法)3通过接口调用类 下面先给出第一条:声明类成员和接口 # ifndef MYTIME0_H_ # defin ...

  5. php 简单的学习GD库绘制图片并传回给前端实现方式

    1.基本的GD库绘制图片汇总 2.后台实现小案例 <?php // $img = imagecreatetruecolor(200,40); // var_dump($img); // 利用GD ...

  6. mysql实现成绩表中成绩的排名

    有这样的一个表: 如果两个分数相同,则两个分数排名(Rank)相同平分后的下一个名次应该是下一个连续的整数值. 因此,名次之间不应该有“间隔”! 此时有2种方法: 第一: select grade, ...

  7. toTree

    // js实现树级递归, // 通过js生成tree树形菜单(递归算法) const data = [ { id: 1, name: "办公管理", pid: 0 }, { id: ...

  8. java设计模式:概述与GoF的23种设计模式

    软件设计模式的产生背景 设计模式这个术语最初并不是出现在软件设计中,而是被用于建筑领域的设计中. 1977 年,美国著名建筑大师.加利福尼亚大学伯克利分校环境结构中心主任克里斯托夫·亚历山大(Chri ...

  9. CIFS 与 SMB 有什么区别?

    CIFS 与 SMB 有什么区别? https://www.getnas.com/2018/11/30/cifs-vs-smb/ 网络协议 一知半解 学习一下挺好的.. 记得 win2019 已经废弃 ...

  10. (二)类数组对象HTMLCollection

    HTMLCollection 表示 HTML 元素的集合. 下面的几种方式将返回 HTMLCollection对象: html: <body> <ul id="box&qu ...