Fast R-CNN存在的问题:选择性搜索,非常耗时。

解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络。

在Fast R-CNN中引入Region Proposal Network(RPN)替代Selective Search,同时引入anchor box应对目标形状的变换问题(anchor就是位置和大小固定的box,可以理解成事先设置好的固定的proposal)

具体做法:

1、将RPN放在最后一个卷积层的后面

2、RPN直接训练得到的候选区域

RPN简介:

1. 在feature map上滑动窗口

2. 建一个神经网络用于物体分类 + 框位置回归

3. 滑动窗口的位置提供了物体的大体位置信息

4. 框的回归提供了框更精确的位置

一种网络,四个损失函数:

1. RPN classification(anchor good.bad)

2. RPN regression(anchor-->proposal)

3. Fast R-CNN classification(over classes)

4. Fast R-CNN regression(proposal-->box)

测试过程:

Faster R-CNN统一的网络结构如下图所示,可以简单看做RPN + Fast R-CNN

注意在RPN网络中的那两个全连接层是并联的,不是串联的,图有点小问题

注意:上图Fast R-CNN中含有特有卷积层,并不是所有卷积层都参与共享

1. 首先向CNN网络(ZF或VGG-16)输入任意大小图片

2. 经过CNN网络前向传播至最后共享的卷积层,一方面得到供RPN网络输入的特征图,另一方面继续前向传播至特有卷积层,产生更高维特征图

3. 供RPN网络输入的特征图经过RPN网络得到区域建议和区域得分,并对区域得分采用非极大值抑制(阈值为0.7),输出其Top-N得分的区域建议给ROI池化层

4. 第2步得到的高维特征图和第3步输出的区域建议同时输入RoI池化层,提取对应区域建议的特征

5. 第4步得到的区域建议特征通过全连接层后,输出该区域的分类得分以及回归后的bounding-box

速度对比:

Faster R-CNN的主要贡献就是设计了提供候选区域的网络RPN,代替了费时的选择性搜索Selective Search,使得检测速度大幅提高。

总结各个算法的步骤:

RCNN

1. 在图像中确定约1000-2000个候选框(使用选择性搜索Selective Search)

2. 每个候选框内图像块缩放至相同大小,并输入到CNN内进行特征提取

3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类

4. 对于属于某一类别的候选框,用回归器进一步调整器位置

Fast R-CNN

1. 在图像中确定约1000-2000个候选框(使用选择性搜索Selective Search)

2. 对整张图片输入CNN,得到feature map

3. 找到每个候选框在feature map中的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层

4. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类

5. 对于属于某一类别的候选框,用回归器进一步调整器位置

Faster R-CNN

1. 对整张图片输入CNN,得到feature map

2. 卷积特征输入到RPN,得到候选框的特征信息

3. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类

4. 对于属于某一类别的候选框,用回归器进一步调整器位置

简言之,

R-CNN(Selective Search + CNN + SVM)

SPP-net(ROI Pooling)

Fast R-CNN(Selective Search + CNN + ROI)

Faster R-CNN(RPN + CNN + ROI)

目标检测算法之Faster R-CNN算法详解的更多相关文章

  1. 【目标检测】SSD+Tensorflow 300&512 配置详解

    SSD_300_vgg和SSD_512_vgg weights下载链接[需要科学上网~]: Model Training data Testing data mAP FPS SSD-300 VGG-b ...

  2. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  3. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  4. 搜索引擎算法研究专题五:TF-IDF详解

    搜索引擎算法研究专题五:TF-IDF详解 2017年12月19日 ⁄ 搜索技术 ⁄ 共 1396字 ⁄ 字号 小 中 大 ⁄ 评论关闭   TF-IDF(term frequency–inverse ...

  5. 目标检测算法(一):R-CNN详解

    参考博文:https://blog.csdn.net/hjimce/article/details/50187029 R-CNN(Regions with CNN features)--2014年提出 ...

  6. R-CNN目标检测的selective search(SS算法)

    候选框确定算法 对于候选框的位置确定问题,简单粗暴的方法就是穷举或者说滑动窗口法,但是这必然是不科学的,因为时间和计算成本太高,直观的优化就是假设同一种物体其在图像邻域内有比较近似的特征(例如颜色.纹 ...

  7. 目标检测复习之Faster RCNN系列

    目标检测之faster rcnn系列 paper blogs1: 一文读懂Faster RCNN Faster RCNN理论合集 code: mmdetection Faster rcnn总结: 网络 ...

  8. DPLL 算法(求解k-SAT问题)详解(C++实现)

    \(\text{By}\ \mathsf{Chesium}\) DPLL 算法,全称为 Davis-Putnam-Logemann-Loveland(戴维斯-普特南-洛吉曼-洛夫兰德)算法,是一种完备 ...

  9. 二分算法题目训练(四)——Robin Hood详解

    codeforces672D——Robin Hood详解 Robin Hood 问题描述(google翻译) 我们都知道罗宾汉令人印象深刻的故事.罗宾汉利用他的射箭技巧和他的智慧从富人那里偷钱,然后把 ...

  10. Canny边缘检测算法原理及C语言实现详解

    Canny算子是John Canny在1986年提出的,那年老大爷才28岁,该文章发表在PAMI顶级期刊上的(1986. A computational approach to edge detect ...

随机推荐

  1. 使用ENCKEYS方法加密数据

    要使用这种数据加密方法,您需要配置Oracle GoldenGate以生成加密密钥并将密钥存储在本地ENCKEYS文件中.此方法使用的永久密钥只能通过根据使用加密密钥填充ENCKEYS文件中的说明重新 ...

  2. 关于Oracle数据库后台进程

    为了最大限度地提高性能并适应许多用户,多进程Oracle数据库系统使用后台进程.后台进程将合并功能,否则这些功能将由运行于每个用户进程的多个数据库程序处理.后台进程异步执行I / O并监视其他Orac ...

  3. 【VMware vSphere】使用U盘给戴尔服务器安装ESXi6.0系统

    写在前面:          安装ESXi系统需要准备两个U盘,而且Raid已经做好          说明:          两个U盘,一个为启动盘(类似于大白菜),另一个作为安装系统使用(类似于 ...

  4. CFtpConnection Class

    CFtpConnection Class   1.链接http://technet.microsoft.com/zh-cn/office/2kywsafk(v=vs.80) 2.测试ftp可以用这个地 ...

  5. linux虚拟机网络服务问题

    这里说一下我遇到的一个网络问题,前天修改了虚拟机的主机名,重启虚拟机之后,使用新的主机名和IP都可以访问虚拟机,但昨天开启虚拟机之后,宿主机使用主机名和IP都不能访问虚拟机,于是,我通过ifconfi ...

  6. 洛谷:P3281 [SCOI2013]数数 (优秀的解法)

    刷了这么久的数位 dp ,照样被这题虐,还从早上虐到晚上,对自己无语...(机房里又是只有我一个人,寂寞.) 题目:洛谷P3281 [SCOI2013]数数 题目描述 Fish 是一条生活在海里的鱼, ...

  7. centos7 docker使用https_proxy 代理配置

    centos7 docker使用https_proxy 代理配置 背景: 内网的centos主机不能上网,通过同网段的windows设置代理上网,yum.conf配置http代理是可以的,但是dock ...

  8. Golang 类型转换,断言和显式强制转换

    1 前言 类型转换,可以用断言(只能使用在interface{}类型转换成其它类型)和显式类型强制转换(常规是用于基本类型) 2 代码 //graphql-go func(params graphql ...

  9. css之坑

    1.background-size要放在background后边才会生效. 2.隐藏滚动条,内容可以滑动 body::-webkit-scrollbar { display: none /* 隐藏滚动 ...

  10. npm cnpm +nodejs

    nodejs win+r  打开cmd.命令:1.node -v   (查看版本信息)2.npm -v  (查看版本信息)3.npm install -g cnpm –registry=https:/ ...