1.

# 克隆自聚宽文章:https://www.joinquant.com/post/2709
# 标题:基于SVM的机器学习策略
# 作者:走得很慢的海龟 import math
import numpy as np
#from sklearn import preprocessing, cross_validation, svm
from sklearn import preprocessing, svm
import matplotlib.pyplot as plt
from matplotlib import style
import sklearn
import time
from datetime import datetime
import cPickle as pickle def initialize(context):
g.train=True # year_date is for get_fundamentals
def train_data(year_date, index_date):
Valuation=[]
price=[]
status=[]
SZ1=get_index_stocks('399008.XSHE', date=index_date)
SZ2=get_index_stocks('399012.XSHE', date=index_date)
SH=get_index_stocks('399905.XSHE', date=index_date)
tem_index=SZ1+SZ2+SH
unix_30d=60*60*24*30
unix_weekend=60*60*24*3 q=query(
income.code, income.pubDate, income.total_operating_revenue,
income.total_operating_cost, income.administration_expense,
income.operating_profit, income.non_operating_revenue,
income.total_profit, income.net_profit, income.basic_eps,
income.diluted_eps, income.total_composite_income
).filter(
valuation.code.in_(tem_index)) incm = get_fundamentals(q, statDate=year_date)
date=incm['pubDate']
index=incm['code'] q=query(
indicator
).filter(
valuation.code.in_(index))
indictor=get_fundamentals(q, statDate=year_date)
del(indictor['code'], indictor['statDate'], indictor['pubDate']) for each in range(0,len(date)):
q=query(
valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
).filter(
valuation.code==(index[each]))
each_valuation=get_fundamentals(q, date=date[each]) date_stamp = datetime.strptime(date[each], '%Y-%m-%d')
unix=time.mktime(date_stamp.timetuple())
unix_30_late=unix+unix_30d Valuation.append(each_valuation.iloc[0].tolist()) p1=get_price(index[each], start_date=date[each],
end_date=date[each], frequency='daily', fields='close') if not p1.empty:
pass
else:
p1_weekend=datetime.fromtimestamp(unix-unix_weekend).strftime('%Y-%m-%d')
p1=get_price(index[each], start_date=p1_weekend,
end_date=p1_weekend, frequency='daily', fields='close') p1_30d=datetime.fromtimestamp(unix_30_late).strftime('%Y-%m-%d')
p2=get_price(index[each], start_date=p1_30d,
end_date=p1_30d, frequency='daily', fields='close') if not p2.empty:
pass
else:
date_stamp2 = datetime.strptime(p1_30d, '%Y-%m-%d')
unix2=time.mktime(date_stamp2.timetuple())
unix2_weekend=unix2-unix_weekend
p2_weekend=datetime.fromtimestamp(unix2_weekend).strftime('%Y-%m-%d')
p2=get_price(index[each], start_date=p2_weekend,
end_date=p2_weekend, frequency='daily', fields='close') dif = p2.values / p1.values if dif > 1.1:
s=1
else:
s=0
status.append(s) price.append(p1.iloc[0].tolist()) Valuation=pd.DataFrame(Valuation, columns=['pe','pb','cir_mkt_cap'])
price=pd.DataFrame(price, columns=['price'])
status=pd.DataFrame(status, columns=['status'])
df=pd.concat([incm,Valuation,price,indictor,status], axis=1) del(df['pubDate'], df['statDate.1'], df['code'])
#y=df['status'].values.tolist()
#df=np.random.permutation(df)
#del(df['status'], df['code'])
#X=np.array(df.replace('NaN', 9999).values.tolist())
#X=preprocessing.scale(X)
return df def fundamental(index):
Valuation=[]
price=[]
status=[] q=query(
income.total_operating_revenue,
income.total_operating_cost, income.administration_expense,
income.operating_profit, income.non_operating_revenue,
income.total_profit, income.net_profit, income.basic_eps,
income.diluted_eps, income.total_composite_income
).filter(
valuation.code.in_(index))
incm = get_fundamentals(q) q=query(
valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
).filter(
valuation.code.in_(index))
Valuation=get_fundamentals(q)#.values.tolist() q=query(
indicator
).filter(
valuation.code.in_(index))
indictor=get_fundamentals(q)#.values.tolist()
index2=indictor['code']
del(indictor['code'], indictor['statDate'], indictor['pubDate'], indictor['day']) for each in index2:
p=attribute_history(each, 1, unit='1d', fields=['close'], skip_paused=True)
price.append(p.iloc[0].tolist()) price=pd.DataFrame(price, columns=['price'])
df=pd.concat([incm,Valuation,price,indictor], axis=1)
X=np.array(df.replace('NaN', 9999).values.tolist()) X=preprocessing.scale(X)
return X, index2 def handle_data(context, data):
if g.train:
index_date=str('2014-03-01')
df1=train_data(str('2014q1'),index_date)
df2=train_data(str('2014q2'),index_date)
df3=train_data(str('2014q3'),index_date)
df4=train_data(str('2014q4'),index_date)
df=pd.concat([df1,df2,df3,df4], axis=0)
df.iloc[np.random.permutation(len(df))]
y=df['status'].values.tolist()
del(df['status'])
log.info("<===== shape of training dataset @ %s", str(df.shape))
X=np.array(df.replace('NaN', 9999).values.tolist()) X=preprocessing.scale(X) clf = svm.SVC(kernel=str("linear"), C=1.0)
clf.fit(X, y) filename = "temp.pkl"
pickle_file = open(filename, 'wb')
pickle.dump(clf, pickle_file)
pickle_file.close()
g.train=False filename = "temp.pkl"
pickle_file = open(filename, 'rb')
clf = pickle.load(pickle_file) year=context.current_dt.year
month=context.current_dt.month
day=context.current_dt.day
index_date=str(year)+'-'+str(month)+'-'+str(day) SZ1=get_index_stocks('399008.XSHE', date=index_date)
SZ2=get_index_stocks('399012.XSHE', date=index_date)
SH=get_index_stocks('399905.XSHE', date=index_date)
index=SZ1+SZ2+SH X, index2=fundamental(index) for each in range(0, len(index2)):
if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 1 and index2[each] not in context.portfolio.positions.keys():
log.info("===================Buying:", index2[each])
order_target_value(index2[each], context.portfolio.cash/5)
if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 0 and index2[each] in context.portfolio.positions.keys():
log.info("<<<<<<<<<<<<<<<<<<Holding:", context.portfolio.positions.keys())
log.info("-------------------selling:", index2[each])
order_target(index2[each], 0) # 止损 if context.portfolio.positions:
for stock in context.portfolio.positions.keys():
cur_price = data[stock].close
position=context.portfolio.positions[stock]
if cur_price > position.avg_cost * (1 + 0.5) or cur_price < position.avg_cost * (1 - 0.2):
order_target(stock, 0)
log.info("<<<<<<<<<<<", stock, "%s lose:", 1-cur_price/position.avg_cost)

  https://www.joinquant.com/

https://zhuanlan.zhihu.com/p/24649311

第25月第7天 聚宽 svm的更多相关文章

  1. 聚宽投资研究获取A股05年至今全部数据

    #用中正全指'000985.XSHG'获取全部A股数据pool=get_index_stocks('000985.XSHG') #date存储05年开始全部交易时间 date=get_price('0 ...

  2. 金融量化分析【day113】:聚宽自带策略

    一.策略代码 # 导入函数库 from jqdata import * # 初始化函数,设定基准等等 def initialize(context): # 设定沪深300作为基准 set_benchm ...

  3. 聚宽获取财务数据+DataFrame写入txt

    from jqdata import jy from jqdata import * #获取股票列表,这里是板块内股票 pool=get_industry_stocks(',date='2016-09 ...

  4. 第25月第26天 dispatch_group_t dispatch_semaphore_t

    1. dispatch_group_enter(group); dispatch_group_leave(group); dispatch_group_notify(group1, queue1,bl ...

  5. 第25月25日 urlsession

    1. private lazy var session: URLSession = { let configuration = URLSessionConfiguration.default conf ...

  6. 第25月第22日 django channels

    1. https://github.com/andrewgodwin/channels-examples/ https://channels.readthedocs.io/en/latest/

  7. 第25月第18天 vue

    1.cnpm sudo chown -R $USER /usr/local  npm install -g cnpm --registry=https://registry.npm.taobao.or ...

  8. 第25月第17天 django rest framwork authentication /tmp/mysql.sock

    1.authentication https://www.django-rest-framework.org/api-guide/authentication/#authentication 2.dj ...

  9. 第25月第15天 udacity cs253

    1.cs253 https://classroom.udacity.com/courses/cs253 webapp2 Install WebOb, Paste and webapp2¶ We nee ...

随机推荐

  1. tyvj/joyoi 1305 最大子序和

    带了一个转化的单调队列裸题. 转化为前缀和相减即可. 有一点需要注意:从0开始入队而不是1,因为要统计第一个. (从网上找的对拍程序,结果别人写错了) /** freopen("in.in& ...

  2. A1134. Vertex Cover

    A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...

  3. A1120. Friend Numbers

    Two integers are called "friend numbers" if they share the same sum of their digits, and t ...

  4. 做IT项目管理也需要具备产品思维

    不知道大家有没有听过大胡子姜志辉老师的公开课,我自己认为讲的还是不错的. 因为本身大胡子老师就是一个IT行业的人士,自己还经历了程序员.架构师.项目经理.敏捷教练.产品经理.公司持有人等多个角色.所以 ...

  5. 原生JS实现$.ajax

    function ajax(obj){ obj=obj||{}; obj.type=(obj.type||'GET').toUpperCase(); obj.dataType=obj.dataType ...

  6. python异步编程之asyncio(百万并发)

      前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最 ...

  7. AtomicInteger类的理解与使用

    AtomicInteger类的理解与使用 首先看两段代码,一段是Integer的,一段是AtomicInteger的,为以下: public class Sample1 { private stati ...

  8. consul介绍

    consul 是一个支持多数据中心分布式高可用,用于服务发现和配置共享的工具. consul与其它工具的不同,官方介绍如下: https://www.consul.io/intro/vs/index. ...

  9. python机器学习-sklearn挖掘乳腺癌细胞(二)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  10. springMVC的全局拦截器

    先说说为什么要使用springMVC的全局拦截器,比如 当我们在访问接口的时候,我们一般都会先判断这个用户是否登陆,我们就要在每个接口的前面都要判断一下,想想是不是很蛋疼,那工作量... 这时候,我们 ...