第25月第7天 聚宽 svm
1.
# 克隆自聚宽文章:https://www.joinquant.com/post/2709
# 标题:基于SVM的机器学习策略
# 作者:走得很慢的海龟 import math
import numpy as np
#from sklearn import preprocessing, cross_validation, svm
from sklearn import preprocessing, svm
import matplotlib.pyplot as plt
from matplotlib import style
import sklearn
import time
from datetime import datetime
import cPickle as pickle def initialize(context):
g.train=True # year_date is for get_fundamentals
def train_data(year_date, index_date):
Valuation=[]
price=[]
status=[]
SZ1=get_index_stocks('399008.XSHE', date=index_date)
SZ2=get_index_stocks('399012.XSHE', date=index_date)
SH=get_index_stocks('399905.XSHE', date=index_date)
tem_index=SZ1+SZ2+SH
unix_30d=60*60*24*30
unix_weekend=60*60*24*3 q=query(
income.code, income.pubDate, income.total_operating_revenue,
income.total_operating_cost, income.administration_expense,
income.operating_profit, income.non_operating_revenue,
income.total_profit, income.net_profit, income.basic_eps,
income.diluted_eps, income.total_composite_income
).filter(
valuation.code.in_(tem_index)) incm = get_fundamentals(q, statDate=year_date)
date=incm['pubDate']
index=incm['code'] q=query(
indicator
).filter(
valuation.code.in_(index))
indictor=get_fundamentals(q, statDate=year_date)
del(indictor['code'], indictor['statDate'], indictor['pubDate']) for each in range(0,len(date)):
q=query(
valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
).filter(
valuation.code==(index[each]))
each_valuation=get_fundamentals(q, date=date[each]) date_stamp = datetime.strptime(date[each], '%Y-%m-%d')
unix=time.mktime(date_stamp.timetuple())
unix_30_late=unix+unix_30d Valuation.append(each_valuation.iloc[0].tolist()) p1=get_price(index[each], start_date=date[each],
end_date=date[each], frequency='daily', fields='close') if not p1.empty:
pass
else:
p1_weekend=datetime.fromtimestamp(unix-unix_weekend).strftime('%Y-%m-%d')
p1=get_price(index[each], start_date=p1_weekend,
end_date=p1_weekend, frequency='daily', fields='close') p1_30d=datetime.fromtimestamp(unix_30_late).strftime('%Y-%m-%d')
p2=get_price(index[each], start_date=p1_30d,
end_date=p1_30d, frequency='daily', fields='close') if not p2.empty:
pass
else:
date_stamp2 = datetime.strptime(p1_30d, '%Y-%m-%d')
unix2=time.mktime(date_stamp2.timetuple())
unix2_weekend=unix2-unix_weekend
p2_weekend=datetime.fromtimestamp(unix2_weekend).strftime('%Y-%m-%d')
p2=get_price(index[each], start_date=p2_weekend,
end_date=p2_weekend, frequency='daily', fields='close') dif = p2.values / p1.values if dif > 1.1:
s=1
else:
s=0
status.append(s) price.append(p1.iloc[0].tolist()) Valuation=pd.DataFrame(Valuation, columns=['pe','pb','cir_mkt_cap'])
price=pd.DataFrame(price, columns=['price'])
status=pd.DataFrame(status, columns=['status'])
df=pd.concat([incm,Valuation,price,indictor,status], axis=1) del(df['pubDate'], df['statDate.1'], df['code'])
#y=df['status'].values.tolist()
#df=np.random.permutation(df)
#del(df['status'], df['code'])
#X=np.array(df.replace('NaN', 9999).values.tolist())
#X=preprocessing.scale(X)
return df def fundamental(index):
Valuation=[]
price=[]
status=[] q=query(
income.total_operating_revenue,
income.total_operating_cost, income.administration_expense,
income.operating_profit, income.non_operating_revenue,
income.total_profit, income.net_profit, income.basic_eps,
income.diluted_eps, income.total_composite_income
).filter(
valuation.code.in_(index))
incm = get_fundamentals(q) q=query(
valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
).filter(
valuation.code.in_(index))
Valuation=get_fundamentals(q)#.values.tolist() q=query(
indicator
).filter(
valuation.code.in_(index))
indictor=get_fundamentals(q)#.values.tolist()
index2=indictor['code']
del(indictor['code'], indictor['statDate'], indictor['pubDate'], indictor['day']) for each in index2:
p=attribute_history(each, 1, unit='1d', fields=['close'], skip_paused=True)
price.append(p.iloc[0].tolist()) price=pd.DataFrame(price, columns=['price'])
df=pd.concat([incm,Valuation,price,indictor], axis=1)
X=np.array(df.replace('NaN', 9999).values.tolist()) X=preprocessing.scale(X)
return X, index2 def handle_data(context, data):
if g.train:
index_date=str('2014-03-01')
df1=train_data(str('2014q1'),index_date)
df2=train_data(str('2014q2'),index_date)
df3=train_data(str('2014q3'),index_date)
df4=train_data(str('2014q4'),index_date)
df=pd.concat([df1,df2,df3,df4], axis=0)
df.iloc[np.random.permutation(len(df))]
y=df['status'].values.tolist()
del(df['status'])
log.info("<===== shape of training dataset @ %s", str(df.shape))
X=np.array(df.replace('NaN', 9999).values.tolist()) X=preprocessing.scale(X) clf = svm.SVC(kernel=str("linear"), C=1.0)
clf.fit(X, y) filename = "temp.pkl"
pickle_file = open(filename, 'wb')
pickle.dump(clf, pickle_file)
pickle_file.close()
g.train=False filename = "temp.pkl"
pickle_file = open(filename, 'rb')
clf = pickle.load(pickle_file) year=context.current_dt.year
month=context.current_dt.month
day=context.current_dt.day
index_date=str(year)+'-'+str(month)+'-'+str(day) SZ1=get_index_stocks('399008.XSHE', date=index_date)
SZ2=get_index_stocks('399012.XSHE', date=index_date)
SH=get_index_stocks('399905.XSHE', date=index_date)
index=SZ1+SZ2+SH X, index2=fundamental(index) for each in range(0, len(index2)):
if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 1 and index2[each] not in context.portfolio.positions.keys():
log.info("===================Buying:", index2[each])
order_target_value(index2[each], context.portfolio.cash/5)
if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 0 and index2[each] in context.portfolio.positions.keys():
log.info("<<<<<<<<<<<<<<<<<<Holding:", context.portfolio.positions.keys())
log.info("-------------------selling:", index2[each])
order_target(index2[each], 0) # 止损 if context.portfolio.positions:
for stock in context.portfolio.positions.keys():
cur_price = data[stock].close
position=context.portfolio.positions[stock]
if cur_price > position.avg_cost * (1 + 0.5) or cur_price < position.avg_cost * (1 - 0.2):
order_target(stock, 0)
log.info("<<<<<<<<<<<", stock, "%s lose:", 1-cur_price/position.avg_cost)
https://www.joinquant.com/
https://zhuanlan.zhihu.com/p/24649311
第25月第7天 聚宽 svm的更多相关文章
- 聚宽投资研究获取A股05年至今全部数据
#用中正全指'000985.XSHG'获取全部A股数据pool=get_index_stocks('000985.XSHG') #date存储05年开始全部交易时间 date=get_price('0 ...
- 金融量化分析【day113】:聚宽自带策略
一.策略代码 # 导入函数库 from jqdata import * # 初始化函数,设定基准等等 def initialize(context): # 设定沪深300作为基准 set_benchm ...
- 聚宽获取财务数据+DataFrame写入txt
from jqdata import jy from jqdata import * #获取股票列表,这里是板块内股票 pool=get_industry_stocks(',date='2016-09 ...
- 第25月第26天 dispatch_group_t dispatch_semaphore_t
1. dispatch_group_enter(group); dispatch_group_leave(group); dispatch_group_notify(group1, queue1,bl ...
- 第25月25日 urlsession
1. private lazy var session: URLSession = { let configuration = URLSessionConfiguration.default conf ...
- 第25月第22日 django channels
1. https://github.com/andrewgodwin/channels-examples/ https://channels.readthedocs.io/en/latest/
- 第25月第18天 vue
1.cnpm sudo chown -R $USER /usr/local npm install -g cnpm --registry=https://registry.npm.taobao.or ...
- 第25月第17天 django rest framwork authentication /tmp/mysql.sock
1.authentication https://www.django-rest-framework.org/api-guide/authentication/#authentication 2.dj ...
- 第25月第15天 udacity cs253
1.cs253 https://classroom.udacity.com/courses/cs253 webapp2 Install WebOb, Paste and webapp2¶ We nee ...
随机推荐
- tyvj/joyoi 1305 最大子序和
带了一个转化的单调队列裸题. 转化为前缀和相减即可. 有一点需要注意:从0开始入队而不是1,因为要统计第一个. (从网上找的对拍程序,结果别人写错了) /** freopen("in.in& ...
- A1134. Vertex Cover
A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...
- A1120. Friend Numbers
Two integers are called "friend numbers" if they share the same sum of their digits, and t ...
- 做IT项目管理也需要具备产品思维
不知道大家有没有听过大胡子姜志辉老师的公开课,我自己认为讲的还是不错的. 因为本身大胡子老师就是一个IT行业的人士,自己还经历了程序员.架构师.项目经理.敏捷教练.产品经理.公司持有人等多个角色.所以 ...
- 原生JS实现$.ajax
function ajax(obj){ obj=obj||{}; obj.type=(obj.type||'GET').toUpperCase(); obj.dataType=obj.dataType ...
- python异步编程之asyncio(百万并发)
前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最 ...
- AtomicInteger类的理解与使用
AtomicInteger类的理解与使用 首先看两段代码,一段是Integer的,一段是AtomicInteger的,为以下: public class Sample1 { private stati ...
- consul介绍
consul 是一个支持多数据中心分布式高可用,用于服务发现和配置共享的工具. consul与其它工具的不同,官方介绍如下: https://www.consul.io/intro/vs/index. ...
- python机器学习-sklearn挖掘乳腺癌细胞(二)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- springMVC的全局拦截器
先说说为什么要使用springMVC的全局拦截器,比如 当我们在访问接口的时候,我们一般都会先判断这个用户是否登陆,我们就要在每个接口的前面都要判断一下,想想是不是很蛋疼,那工作量... 这时候,我们 ...