执行完 board_init_f 后,重新跳转回 _main 中执行。

10.1 relloc_code 前

10.1.1 gd 设置

  在调用board_init_f()完成板卡与全局结构体变量 gd 的初始化后将其拷贝到在代码段下重新分配的全局结构体中。接下来进行sp的重新设置,将r9指向重新分配的全局变量gd,然后进行代码的重定位。

    /* 将 sp 指针指向全局gd的gd->start_addr_sp,即栈底 */
ldr r0, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */
bic r0, r0, # /* 8-byte alignment for ABI compliance */
mov sp, r0
ldr r9, [r9, #GD_BD] /* r9 = gd->bd */
sub r9, r9, #GD_SIZE /* new GD is below bd */

10.1.2 relocate_vectors

  当执行未 GD 的设置后,跳转到 relocate_vectors 中去执行向量初始化

 adr    lr, here
 here:
/*
* now relocate vectors
*/ bl relocate_vectors

  relocate_vectors 主要是进行异常向量表的重定位,将异常向量表拷贝到正确的地址中去,relocate.S (arch\arm\lib)

 ENTRY(relocate_vectors)
/*
* Copy the relocated exception vectors to the
* correct address
* CP15 c1 V bit gives us the location of the vectors:
* 0x00000000 or 0xFFFF0000.
*/
ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
mrc p15, , r2, c1, c0, /* V bit (bit[13]) in CP15 c1 */
ands r2, r2, #( << )
ldreq r1, =0x00000000 /* If V=0 */
ldrne r1, =0xFFFF0000 /* If V=1 */
ldmia r0!, {r2-r8,r10}
stmia r1!, {r2-r8,r10}
ldmia r0!, {r2-r8,r10}
stmia r1!, {r2-r8,r10}
bx lr ENDPROC(relocate_vectors)

10.1.3  relocate_code

  紧接着设置重定位的开始和结束地址。设置完成后跳转到 relocate_code(relocate.S) 中执行

     ldr    r0, [r9, #GD_RELOC_OFF]        /* r0 = gd->reloc_off */
add lr, lr, r0
ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
b relocate_code

  拷贝代码段和动态连接段

 ENTRY(relocate_code)
ldr r1, =__image_copy_start /* r1 <- SRC &__image_copy_start */
subs r4, r0, r1 /* r4 <- relocation offset */
beq relocate_done /* skip relocation */
ldr r2, =__image_copy_end /* r2 <- SRC &__image_copy_end */ /* 拷贝代码到 SDRAM 中去,.__image_copy_start = 0; */
copy_loop:
ldmia r1!, {r10-r11} /* copy from source address [r1] */
stmia r0!, {r10-r11} /* copy to target address [r0] */
cmp r1, r2 /* until source end address [r2] */
blo copy_loop /*
* fix .rel.dyn relocations
* 重定位 .rel.dyn 段
*/
ldr r2, =__rel_dyn_start /* r2 <- SRC &__rel_dyn_start */
ldr r3, =__rel_dyn_end /* r3 <- SRC &__rel_dyn_end */
fixloop:
ldmia r2!, {r0-r1} /* (r0,r1) <- (SRC location,fixup) */
and r1, r1, #0xff
cmp r1, #R_ARM_RELATIVE
bne fixnext /* relative fix: increase location by offset */
add r0, r0, r4
ldr r1, [r0]
add r1, r1, r4
str r1, [r0]
fixnext:
cmp r2, r3
blo fixloop relocate_done: /* ARMv4- don't know bx lr but the assembler fails to see that */ #ifdef __ARM_ARCH_4__
mov pc, lr
#else
bx lr
#endif ENDPROC(relocate_code)

10.1.4 relocate_code 后

  运行C环境,清理 BSS,执行点灯等操作,然后跳转到 board_init_r 中执行第二阶段初始化

 /* Set up final (full) environment */

     bl    c_runtime_cpu_setup    /* we still call old routine here */
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_FRAMEWORK)
ldr r0, =__bss_start /* this is auto-relocated! */ /* 清理 BSS */
#ifdef CONFIG_USE_ARCH_MEMSET
ldr r3, =__bss_end /* this is auto-relocated! */
mov r1, #0x00000000 /* prepare zero to clear BSS */ subs r2, r3, r0 /* r2 = memset len */
bl memset
#endif #if ! defined(CONFIG_SPL_BUILD)
bl coloured_LED_init
bl red_led_on
#endif
/* call board_init_r(gd_t *id, ulong dest_addr) */
mov r0, r9 /* gd_t */
ldr r1, [r9, #GD_RELOCADDR] /* dest_addr */
/* call board_init_r */
ldr pc, =board_init_r /* this is auto-relocated! */
/* we should not return here. */
#endif

九、uboot 代码流程分析---relloc_code的更多相关文章

  1. 六、uboot 代码流程分析---start.S

    6.1 _start 入口函数 6.1.1 vectors.S (arch\arm\lib) 从上一节可以知道,uboot 的入口函数为 _start .此 函数定义在 vectors.S (arch ...

  2. 十、uboot 代码流程分析---run_main_loop

    调用 board_init_r,传入全局 GD 和 SDRAM 中的目的地址 gd->rellocaddr void board_init_r(gd_t *new_gd, ulong dest_ ...

  3. 八、uboot 代码流程分析---board_init_f

    接着上一节,板子开始做前期初始化工作. 8.1 board_init_f Board_f.c (common) /* 板子初次初始化.boot_flags = 0 */ void board_init ...

  4. 七、uboot 代码流程分析---C环境建立

    7.1 start.S 修改 在上一节中的流程中,发现初始化的过程并没由设置看门狗,也未进行中断屏蔽 如果看门狗不禁用,会导致系统反复重启,因此需要在初始化的时候禁用看门狗:中断屏蔽保证启动过程中不出 ...

  5. u-boot启动流程分析(2)_板级(board)部分

    转自:http://www.wowotech.net/u-boot/boot_flow_2.html 目录: 1. 前言 2. Generic Board 3. _main 4. global dat ...

  6. [国嵌笔记][030][U-Boot工作流程分析]

    uboot工作流程分析 程序入口 1.打开顶层目录的Makefile,找到目标smdk2440_config的命令中的第三项(smdk2440) 2.进入目录board/samsung/smdk244 ...

  7. imx6 uboot启动流程分析

    参考http://blog.csdn.net/skyflying2012/article/details/25804209 这里以imx6平台为例,分析uboot启动流程对于任何程序,入口函数是在链接 ...

  8. Uboot启动流程分析(三)

    1.前言 在前面的文章Uboot启动流程分析(二)中,链接如下: https://www.cnblogs.com/Cqlismy/p/12002764.html 已经对_main函数的整个大体调用流程 ...

  9. Uboot启动流程分析(二)

    1.前言 在前面的文章Uboot启动流程分析(一)中,链接如下: https://www.cnblogs.com/Cqlismy/p/12000889.html 已经简单地分析了low_level_i ...

随机推荐

  1. bzoj4337树的同构

    树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重 ...

  2. 洛谷P4319 变化的道路

    题意:给定图,每条边都有一段存在时间.求每段时间的最小生成树. 解:动态MST什么毒瘤...洛谷上还是蓝题... 线段树分治 + lct维护最小生成树. 对时间开线段树,每条边的存在时间在上面会对应到 ...

  3. Redis:默认配置文件redis.conf详解

    转: Redis:默认配置文件redis.conf详解 # Redis配置文件样例 # Note on units: when memory size is needed, it is possibl ...

  4. opencv mat裁剪

    主要记录的就是对Mat裁剪后,新Mat指向的内存和原来的Mat共用. OpenCV入门教程(3)-Mat类之选取图像局部区域

  5. double free or corruption错误

    这是我自己写代码是遇到的错误,完全想不到报错和写错的地方有关联性,记录下来给别人参考. 不允许转载. WhiteBack(&cut_buff,&out_buff,5)函数内有一段 be ...

  6. JS模块化开发(三)——seaJs+grunt

    1.seaJs直接构建存在的问题 由于模块之间的依赖require引用的是模块名,当多个js模块被合并成一个时,会由于找不到模块名而报错 2.seaJs+grunt开发 用到的插件:grunt-cmd ...

  7. TODO monkey笔记,PC端执行和手机端执行

    微博不给力啊 吞我笔记,还好我有txt... 1.环境准备:安装Android sdk, 配置环境变量:platfrom_tools,tools,aapt;java:2.查询当前apk信息: aapt ...

  8. zookeeper脑裂

    出现: 在搭建hadoop的HA集群环境后,由于两个namenode的状态不一,当active的namenode由于网络等原因出现假死状态,standby接收不到active的心跳,因此判断activ ...

  9. WCF博文链接

    我的基于WCF的SOA架构项目实战 http://www.uml.org.cn/soa/201112201.asp WCF实战(一):创建服务器类 https://blog.csdn.net/qium ...

  10. ssm框架中从controller传值给jsp的方式

    第一种方式是 通过session 第二种如下: 如何将controller层值传递到JSP页面 @RequestMapping(value="/result",method=Req ...