Deploying Keras model on Tensorflow Serving--
keras训练了个二分类的模型。需求是把keras模型跑到 tensorflow serving上 (TensorFlow Serving 系统用于在生产环境中运行模型)
keras模型转 tensorflow模型
我把 keras模型转tensorflow serving模型所使用的方法如下:
1、要拿到算法训练好的keras模型文件(一个HDF5文件)
该文件应该包含:
- 模型的结构,以便重构该模型
- 模型的权重
- 训练配置(损失函数,优化器等)
- 优化器的状态,以便于从上次训练中断的地方开始
2、编写 keras模型转tensorflow serving模型的代码
import pandas as pd
import os
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
...
def build_model():
############
...
return model
def save_model_for_production(model, version, path='prod_models'):
tf.keras.backend.set_learning_phase(1)
if not os.path.exists(path):
os.mkdir(path)
export_path = os.path.join(
tf.compat.as_bytes(path),
tf.compat.as_bytes(version))
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
model_input = tf.saved_model.utils.build_tensor_info(model.input)
model_output = tf.saved_model.utils.build_tensor_info(model.output)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': model_input},
outputs={'output': model_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
with tf.keras.backend.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':
prediction_signature,
})
builder.save()
if __name__ == '__main__':
model_file = './my_model.h5'
if (os.path.isfile(model_file)):
print('model file detected. Loading.')
model = tf.keras.models.load_model(model_file)
else:
print('No model file detected. Starting from scratch.')
model = build_model()
model.compile(loss='binary_crossentropy', optimizer="adam", metrics=['accuracy'])
model.save(model_file)
model.fit(X_train, y_train, batch_size=100, epochs=1, validation_data=(X_test, y_test))
model.summary()
export_path = "tf-model"
save_model_for_production(model, "1", export_path)
上面的例子将模型保存到 tf-model目录下
tf-model目录结构如下:
tf-model/
└── 1
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
saved_model.pb 是能在 tensorflow serving跑起来的模型。
3、跑模型
tensorflow_model_server --port=9000 --model_name="username" --model_base_path="/data/models/tf-model/"
标准输出如下(算法模型已成功跑起来了):
Running ModelServer at 0.0.0.0:00 ...
4、客户端代码
#!/usr/bin/env python
# encoding: utf-8
"""
@version: v1.0
@author: zwqjoy
@contact: zwqjoy@163.com
@site: https://blog.csdn.net/zwqjoy
@file: client
@time: 2018/6/29 15:02
"""
from __future__ import print_function
from grpc.beta import implementations
import tensorflow as tf
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2
import numpy as np
tf.app.flags.DEFINE_string('server', 'localhost:9000',
'PredictionService host:port')
FLAGS = tf.app.flags.FLAGS
def main(_):
host, port = FLAGS.server.split(':')
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
# Send request
# See prediction_service.proto for gRPC request/response details.
data = np.array([4, 0, 0, 0, 1, 0, 1])
data = data.astype(np.float32)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'username' # 这个name跟tensorflow_model_server --model_name="username" 对应
request.model_spec.signature_name = 'predict' # 这个signature_name 跟signature_def_map 对应
request.inputs['inputs'].CopyFrom(
tf.contrib.util.make_tensor_proto(data, shape=(1, 7))) # shape跟 keras的model.input类型对应
result = stub.Predict(request, 10.0) # 10 secs timeout
print(result)
if __name__ == '__main__':
tf.app.run()
客户端跑出的结果是:
outputs {
key: "output"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
dim {
size: 1
}
}
float_val: 0.976889811523
}
}
float_val: 0.976889811523 就是我们需要的结果(概率)
keras模型转 tensorflow模型的一些说明
1、 keras 保存模型
可以使用model.save(filepath)
将Keras模型和权重保存在一个HDF5文件中,该文件将包含:
- 模型的结构,以便重构该模型
- 模型的权重
- 训练配置(损失函数,优化器等)
- 优化器的状态,以便于从上次训练中断的地方开始
当然这个 HDF5 也可以是用下面的代码生成
from keras.models import load_model
model.save('my_model.h5')
2、 keras 加载模型
keras 加载模型(中间部分代码省略了):
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.models import load_model
# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000,28,28)
print('x_shape:',x_train.shape)
# (60000)
print('y_shape:',y_train.shape)
# (60000,28,28)->(60000,784)
x_train = x_train.reshape(x_train.shape[0],-1)/255.0
x_test = x_test.reshape(x_test.shape[0],-1)/255.0
# 换one hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
# 载入模型
model = load_model('model.h5')
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=2)
# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)
# 保存参数,载入参数
model.save_weights('my_model_weights.h5')
model.load_weights('my_model_weights.h5')
keras 模型转tensorflow serving 模型的一些坑
希望能让新手少走一些弯路
坑1:过时的生成方法
有些方法已经过时了(例如下面这种):
from tensorflow_serving.session_bundle import exporter
export_path = ... # where to save the exported graph
export_version = ... # version number (integer)
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input,
scores_tensor=model.output)
model_exporter.init(sess.graph.as_graph_def(),
default_graph_signature=signature)
model_exporter.export(export_path, tf.constant(export_version), sess)
如果使用这种过时的方法,用tensorflow serving 跑模型的时候会提示:
WARNING:tensorflow:From test.py:107: Exporter.export (from tensorflow.contrib.session_bundle.exporter) is deprecated and will be removed after 2017-06-30.
Instructions for updating:
No longer supported. Switch to SavedModel immediately.
从warning中 显然可以知道这种方法要被抛弃了,不再支持这种方法了, 建议我们转用 SaveModel方法。
填坑大法: 使用 SaveModel
def save_model_for_production(model, version, path='prod_models'):
tf.keras.backend.set_learning_phase(1)
if not os.path.exists(path):
os.mkdir(path)
export_path = os.path.join(
tf.compat.as_bytes(path),
tf.compat.as_bytes(version))
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
model_input = tf.saved_model.utils.build_tensor_info(model.input)
model_output = tf.saved_model.utils.build_tensor_info(model.output)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'inputs': model_input},
outputs={'output': model_output},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
with tf.keras.backend.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':
prediction_signature,
})
builder.save()
参考:
Deploying Keras model on Tensorflow Serving with GPU support
https://github.com/amir-abdi/keras_to_tensorflow
Deploying Keras model on Tensorflow Serving--的更多相关文章
- Problem after converting keras model into Tensorflow pb - 将keras模型转换为Tensorflow pb后的问题
I'm using keras 2.1.* with tensorflow 1.13.* backend. I save my model during training with .h5 forma ...
- 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...
- tensorflow 2.0 技巧 | 自定义tf.keras.Model的坑
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_form ...
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- 通过Docker构建TensorFlow Serving
最近在用Docker搭建TensorFlow Serving, 在查阅了官方资料后,发现其文档内有不少冗余的步骤,便一步步排查,终于找到了更简单的Docker镜像构建方法.这里有两种方式: 版本一: ...
- tensorflow serving
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https ...
- tensorflow serving 之minist_saved_model.py解读
最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...
- Tensorflow Serving 模型部署和服务
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...
- Tensorflow Serving Docker compose 部署服务细节(Ubuntu)
[摘要] Tensorflow Serving 是tf模型持久化的重要工具,本篇介绍如何通过Docker compose搭建并调试TensorFlow Serving TensorFlow Servi ...
随机推荐
- Java程序设计(第二版)复习 第三章
数组的使用 首先定义,然后用new生成数组,最后通过下标访问 定义 此时只是引用还未分配内存空间,需要使用new去分配内存空间,否则是无法被访问的 定义的两种方法:数据类型 数组名[];数据类型 [] ...
- (PMP)第3章-----项目经理的角色
项目经理的能力: 1.技术项目管理 2.领导力 3.战略和商务管理 ----------------------------------------------- 管理:指挥从一个位置到另一个位置 领 ...
- 转发对python装饰器的理解
[Python] 对 Python 装饰器的理解的一些心得分享出来给大家参考 原文 http://blog.csdn.net/sxw3718401/article/details/3951958 ...
- 与我们息息相关的internet服务(3)---电子邮件服务
几年前了解了一下,现在再实施的时候,再了解,当然如果要到牛人张小龙28岁时的开发程度,可能还差一个筋斗云 在起步一个公司,从组建的技术上,可能要准备很多东西,其中一个就是我们熟悉的企业邮箱. 伊妹儿, ...
- java面试一、1.2集合
免责声明: 本文内容多来自网络文章,转载为个人收藏,分享知识,如有侵权,请联系博主进行删除. 1.2常见集合 List.Set.Map的区别以及选用 List和Set都继承与Collectio ...
- JS求数组差集的几种方法
第一种:如果不考虑IE8的兼容性完全可以使用Foreach ,此方法求出arr1 减去 arr2的差集, arr1 = [1,2,3,4];arr2 = [1,2,3]; var subSet = f ...
- C# WebAPI系列(2)
上篇中简单介绍了一下WebApi,本章主要介绍一下Controller相关的知识. 在实际应用中,Controller是WebAPI的链接服务器和客户端的窗口.Controller的好坏影响整个系统的 ...
- 大数据开发主战场hive (企业hive应用)
hive在大数据套件中占很的地位,分享下个人经验. 1.在hive日常开发中,我们首先面对的就是hive的表和库,因此我要先了解库,表的命名规范和原则 如 dwd_whct_xmxx_m 第1部分为表 ...
- linux-ssh登陆导语
用户登录前显示的导语信息(在你选择的文件中配置,例如 /etc/login.warn) 用户成功登录后显示的导语信息(在 /etc/motd 中配置) 如何在用户登录前连接系统时显示消息 当用户连接到 ...
- android hal 诠释
历史原因使Android系统有了HAL,它的角色相当于一个中间人,对上层,它负责给JNI提供调用kernel的方法,对下层,它所提供的方法包含能够访问kernel的函数,即kernel提供给上层的AP ...