Table of Contents

  1. [Edge List <-- Adjacency Matrix](# Edge List <-- Adjacency Matrix)
  2. [Edge List --> Adjacency Matrix](# Edge List --> Adjacency Matrix)
  3. [About Adjacency List](#About Adjacency List)

Edge List <-- Adjacency Matrix

'''
ref: https://www.cnblogs.com/sonictl/p/10688533.html
convert adjMatrix into edgelist: 'data/unweighted_edgelist.number' or 'data/weighted_edgelist.number'' input: adjacency matrix with delimiter=', '
it can process:
- Unweighted directed graph
- Weighted directed graph output: edgelist (unweighted and weighted) ''' import numpy as np
import networkx as nx # -------DIRECTED Graph, Unweighted-----------
# Unweighted directed graph:
a = np.loadtxt('data/test_adjMatrix.txt', delimiter=', ', dtype=int)
D = nx.DiGraph(a)
nx.write_edgelist(D, 'data/unweighted_edgelist.number', data=False) # output edges = [(u, v) for (u, v) in D.edges()]
print(edges) # -------DIRECTED Graph, Weighted------------
# Weighted directed graph (weighted adj_matrix):
a = np.loadtxt('data/adjmatrix_weight_sample.txt', delimiter=', ', dtype=float)
D = nx.DiGraph(a)
nx.write_weighted_edgelist(D, 'data/weighted_edgelist.number') # write the weighted edgelist into file # print(D.edges)
elarge = [(u, v, d['weight']) for (u, v, d) in D.edges(data=True) if d['weight'] > 0.]
print(elarge) # class: list # -------UNDIRECTED Graph -------------------
# for undirected graph, simply use:
udrtG = D.to_undirected() '''
test_adjMatrix.txt: (Symmetric matrices if unweighted graph)
---
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
=== adjmatrix_weight_sample.txt:
---
0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0
0, 0, 0.5, 0, 0, 0, 0.5, 0.5
0, 0, 0, 0.5, 0.5, 0, 0, 0
0, 0.5, 0, 0, 0.5, 0.5, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0.5, 0, 0, 0, 0, 0
=== output:
---
[(0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (1, 2), (1, 6), (1, 7), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (7, 2)]
[(0, 1, 0.5), (0, 2, 0.5), (0, 3, 0.5), (0, 5, 0.5), (0, 6, 0.5), (1, 2, 0.5), (1, 6, 0.5), (1, 7, 0.5), (2, 3, 0.5), (2, 4, 0.5), (3, 1, 0.5), (3, 4, 0.5), (3, 5, 0.5), (7, 2, 0.5)]
===
'''

Edge List --> Adjacency Matrix

'''
https://networkx.github.io/documentation/networkx-2.2/reference/generated/networkx.linalg.graphmatrix.adjacency_matrix.html ''' import numpy
import networkx as nx # edgelist to adjacency matrix # way1: G=nx.read_edgelist
D = nx.read_edgelist('input/edgelist_sample.txt', create_using=nx.DiGraph(), nodetype=int) # create_using=nx.Graph()
print(D.edges)
print(D.nodes) # way2:
'''
a = numpy.loadtxt('input/edgelist_sample.txt', dtype=int)
edges = [tuple(e) for e in a]
D = nx.DiGraph()
D.add_edges_from(edges) # D.add_edges_from(nodes); D.edges; D.nodes
D.name = 'digraph_sample'
print(nx.info(D)) udrtG = D.to_undirected()
udrtG.name = 'udrt'
print(nx.info(udrtG))
''' # dump to file as adjacency Matrix
A = nx.adjacency_matrix(D, nodelist=list(range(len(D.nodes)))) # nx.adjacency_matrix(D, nodelist=None, weight='weight') # Return type: SciPy sparse matrix
# print(A) # type < SciPy sparse matrix >
A_dense = A.todense() # type-> numpy.matrixlib.defmatrix.matrix
print(A_dense, type(A_dense)) print('--- See two row of matrix equal or not: ---')
print((numpy.equal(A_dense[5], A_dense[6])).all()) # print('to_numpy_array:\n', nx.to_numpy_array(D, nodelist=list(range(len(D.nodes))))) # print('to_dict_of_dicts:\n', nx.to_dict_of_dicts(D, nodelist=list(range(len(D.nodes)))))

About Adjacency LIST

nx.read_adjlist()

Convert Adjacency matrix into edgelist

import numpy as np

#read matrix without head.
a = np.loadtxt('admatrix.txt', delimiter=', ', dtype=int) #set the delimiter as you need
print "a:"
print a
print 'shape:',a.shape[0] ,"*", a.shape[1] num_nodes = a.shape[0] + a.shape[1] num_edge = 0
edgeSet = set() for row in range(a.shape[0]):
for column in range(a.shape[1]):
if a.item(row,column) == 1 and (column,row) not in edgeSet: #get rid of repeat edge
num_edge += 1
edgeSet.add((row,column)) print '\nnum_edge:', num_edge
print 'edge Set:', edgeSet
print ''
for edge in edgeSet:
print edge[0] , edge[1]

Sample Adjacency Matrix Input file:

0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0

Convert Adjacency matrix into edgelist的更多相关文章

  1. 路径规划 Adjacency matrix 传球问题

    建模 问题是什么 知道了问题是什么答案就ok了 重复考虑 与 重复计算 程序可以重复考虑  但往目标篮子中放入时,放不放把握好就ok了. 集合 交集 并集 w 路径规划 字符串处理 42423 424 ...

  2. 【leetcode】1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix

    题目如下: Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the ...

  3. LeetCode 1284. Minimum Number of Flips to Convert Binary Matrix to Zero Matrix (最少翻转次数将二进制矩阵全部置为0)

    给一个矩阵mat,每个格子都是0或1,翻转一个格子会将该格子以及相邻的格子(有共同边)全部翻转(0变为1,1变为0) 求问最少需要翻转几次将所有格子全部置为0. 这题的重点是数据范围,比赛结束看了眼数 ...

  4. Adjacency matrix based Graph

    Interface AddVertex(T data) AddEdge(int from, int to) DFS BFS MST TopSort PrintGraph using System; u ...

  5. R matrix 转换为 dataframe

    When I try converting a matrix to a data frame, it works for me: > x <- matrix(1:6,ncol=2,dimn ...

  6. 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明

    摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...

  7. Distance matrix

    w https://en.wikipedia.org/wiki/Distance_matrix For example, suppose these data are to be analyzed, ...

  8. 用matalb、python画聚类结果图

    用matlab %读入聚类后的数据, 已经分好级别了,例如前4行是亚洲一流, %-13是亚洲二流,-24是亚洲三流 a=xlsread('C:\Users\Liugengxin\Desktop\1.x ...

  9. OO课程第三次总结QWQ

    调研,然后总结介绍规格化设计的大致发展历史和为什么得到了人们的重视 emmm为这个问题翻遍百度谷歌知乎也没有得到答案,那我就把自己认为最重要的两点简要说明一下吧,欢迎大家补充~ 1.便于完成代码的重用 ...

随机推荐

  1. hbuilder中的wap2app (将M站快速转换成App的开发框架)使用过程有关原生标题的关闭

    首先,我最近在做有关将M站快速转换成App的项目,在网上看了很多,最终结合同学的推荐,我选择了hbuilder,有关于hbuilder的下载还有具体使用方法,官网都有详细的说明,我就不介绍了,我重点介 ...

  2. eclipse中js报错简单快捷的解决方式

    eclipse中对正确的js文件报错十分常见,我的项目中只要是以.js结尾的必会报错,作为一名小小的程序员,看到“满江红”甚是烦躁!今天就给大家分享一个方便又快捷的解决方案. 瞄准被报错的js文件点鼠 ...

  3. sku

    以淘宝为例,sku是具体到某一个商家具体规格商品,比如某商家红色64g的iPhone6,sku对应有对应的价格和库存.而SPU就是我们在输入框里输入的iPhone6,它是多个商家的集合.淘宝的“宝贝” ...

  4. fillder抓包工具详解

    https://www.cnblogs.com/yyhh/p/5140852.html

  5. linux安装mysql后root无法登录 sql 无法登录

    linux安装mysql后root无法登录 问题:[root@localhost mysql]# mysql -u root -pEnter password: ERROR 1045 (28000): ...

  6. python基础——2、python应用(随机、异常)——(YZ)

    本次的内容为python的应用,关于随机.异常的应用,均多应用列表. 习题一 1.初始化一个数据集,包括5-10位同学的成绩数据(数据类型不限),数据格式如下: 学号 姓名 Java C语言 Pyth ...

  7. Spark源码系列:DataFrame repartition、coalesce 对比

    在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在Spark ...

  8. Python中安装MySQL

    Windows 下Python3.6安装 mysql_python 存在各种不成功,切换到 SQLAlchemy也不行需要安装MySQL_python.需要安装mysqlclient. 执行 pip ...

  9. Open Source 开发工具集

    Open Source 开发工具集 转自:http://www.linuxforum.net原作者:gogoliu(Pooh-Bah) 编辑器: vi:老牌编辑器,在各个unix和unix-like平 ...

  10. onclick事件传递对象参数

    <a href="#"onclick="editName(JSON.stringify(data).replace(/"/g, '"'))&qu ...