处理大型文件是一种内存密集型操作,可能导致服务器耗尽RAM内存并交换到磁盘。让我们看一下使用Ruby处理CSV文件的几种方法,并测量内存消耗和速度性能。

Prepare CSV data sample

Before we start, let's prepare a CSV file data.csv with 1 million rows (~ 75 MB) to use in tests.

require 'csv'
require_relative './helpers' headers = ['id', 'name', 'email', 'city', 'street', 'country'] name = "Pink Panther"
email = "pink.panther@example.com"
city = "Pink City"
street = "Pink Road"
country = "Pink Country" print_memory_usage do
print_time_spent do
CSV.open('data.csv', 'w', write_headers: true, headers: headers) do |csv|
1_000_000.times do |i|
csv << [i, name, email, city, street, country]
end
end
end
end

Memory used and time spent

This script above requires the helpers.rb script which defines two helper methods for measuring and printing out the memory used and time spent.

require 'benchmark'

def print_memory_usage
memory_before = `ps -o rss= -p #{Process.pid}`.to_i
yield
memory_after = `ps -o rss= -p #{Process.pid}`.to_i puts "Memory: #{((memory_after - memory_before) / 1024.0).round(2)} MB"
end def print_time_spent
time = Benchmark.realtime do
yield
end puts "Time: #{time.round(2)}"
end

The results to generate the CSV file are:

$ ruby generate_csv.rb
Time: 5.17
Memory: 1.08 MB

Output can vary between machines, but the point is that when building the CSV file, the Ruby process did not spike in memory usage because the garbage collector (GC) was reclaiming the used memory. The memory increase of the process is about 1MB, and it created a CSV file with size of 75 MB.

$ ls -lah data.csv
-rw-rw-r-- 1 dalibor dalibor 75M Mar 29 00:34 data.csv

Reading CSV from a file at once (CSV.read)

Let's build a CSV object from a file (data.csv) and iterate with the following script:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
csv = CSV.read('data.csv', headers: true)
sum = 0 csv.each do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse1.rb
Sum: 499999500000
Time: 19.84
Memory: 920.14 MB

Important to note here is the big memory spike to 920 MB. That is because we build the whole CSV object in memory. That causes lots of String objects to be created by the CSV library and the used memory is much more higher than the actual size of the CSV file.

Parsing CSV from in memory String (CSV.parse)

Let's build a CSV object from a content in memory and iterate with the following script:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
content = File.read('data.csv')
csv = CSV.parse(content, headers: true)
sum = 0 csv.each do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse2.rb
Sum: 499999500000
Time: 21.71
Memory: 1003.69 MB

As we can see from the results, the memory increase is about the memory increase from the previous example plus the memory size of the file content that we read in memory (75MB).

Parsing CSV line by line from String in memory (CSV.new)

Let's now see what happens if we load the file content in a String and parse it line by line:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
content = File.read('data.csv')
csv = CSV.new(content, headers: true)
sum = 0 while row = csv.shift
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

The results are:

$ ruby parse3.rb
Sum: 499999500000
Time: 9.73
Memory: 74.64 MB

From the results we can see that the memory used is about the file size (75 MB) because the file content is loaded in memory and the processing time is about twice faster. This approach is useful when we have the content that we don't need to read it from a file and we just want to iterate over it line by line.

Parsing CSV file line by line from IO object

Can we do any better than the previous script? Yes, if we have the CSV content in a file. Let's use an IO file object directly:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
File.open('data.csv', 'r') do |file|
csv = CSV.new(file, headers: true)
sum = 0 while row = csv.shift
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end
end

The results are:

$ ruby parse4.rb
Sum: 499999500000
Time: 9.88
Memory: 0.58 MB

In the last script we see less than 1 MB of memory increase. Time seems to be a very little slower compared to previous script because there is more IO involved. The CSV library has a built in mechanism for this, CSV.foreach:

require_relative './helpers'
require 'csv' print_memory_usage do
print_time_spent do
sum = 0 CSV.foreach('data.csv', headers: true) do |row|
sum += row['id'].to_i
end puts "Sum: #{sum}"
end
end

结果类似:

$ ruby parse5.rb
Sum: 499999500000
Time: 9.84
Memory: 0.53 MB

想象一下,您需要处理10GB或更大的大型CSV文件。决定使用最后一个策略似乎是显而易见的。

使用Ruby处理大型CSV文件的更多相关文章

  1. 建议42:使用pandas处理大型CSV文件

    # -*- coding:utf-8 -*- ''' CSV 常用API 1)reader(csvfile[, dialect='excel'][, fmtparam]),主要用于CSV 文件的读取, ...

  2. Python 从大型csv文件中提取感兴趣的行

    帮妹子处理一个2.xG 大小的 csv文件,文件太大,不宜一次性读入内存,可以使用open迭代器. with open(filename,'r') as file # 按行读取 for line in ...

  3. 109.大型的csv文件的处理方式

    HttpResponse对象将会将响应的数据作为一个整体返回,此时如果数据量非常大的话,长时间浏览器没有得到服务器的响应,就会超过默认的超时时间,返回超时.而StreamingHttpResponse ...

  4. Django学习笔记之视图高级-CSV文件生成

    生成CSV文件 有时候我们做的网站,需要将一些数据,生成有一个CSV文件给浏览器,并且是作为附件的形式下载下来.以下将讲解如何生成CSV文件. 生成小的CSV文件 这里将用一个生成小的CSV文件为例. ...

  5. Django生成CSV文件

    1.生成CSV文件 有时候我们做的网站,需要将一些数据,生成有一个CSV文件给浏览器,并且是作为附件的形式下载下来.以下将讲解如何生成CSV文件. 2.生成小的CSV文件 这里将用一个生成小的CSV文 ...

  6. POI以SAX方式解析Excel2007大文件(包含空单元格的处理) Java生成CSV文件实例详解

    http://blog.csdn.net/l081307114/article/details/46009015 http://www.cnblogs.com/dreammyle/p/5458280. ...

  7. [Python]-pandas模块-CSV文件读写

    Pandas 即Python Data Analysis Library,是为了解决数据分析而创建的第三方工具,它不仅提供了丰富的数据模型,而且支持多种文件格式处理,包括CSV.HDF5.HTML 等 ...

  8. CSV文件分割与列异常处理的python脚本

    csv文件通常存在如下问题: 1. 文件过大(需要进行文件分割)2. 列异常(列不一致,如元数据列为10列,但csv文件有些行是11列,或者4列)本脚本用于解决此问题. #coding=utf-8 ' ...

  9. 用opencsv文件读写CSV文件

    首先明白csv文件长啥样儿: 用excel打开就变成表格了,看不到细节 推荐用其它简单粗暴一点儿的编辑器,比如Notepad++, csv文件内容如下: csv文件默认用逗号分隔各列. 有了基础的了解 ...

随机推荐

  1. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  2. 爬虫_糗事百科(scrapy)

    糗事百科scrapy爬虫笔记 1.response是一个'scrapy.http.response.html.HtmlResponse'对象,可以执行xpath,css语法来提取数据 2.提取出来的数 ...

  3. 08 Zabbix4.0系统配置事件通知 - 动作Action

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 08 Zabbix4.0系统配置事件通知 - 动作Action 请点击查看Zabbix3.0.8版 ...

  4. Redhat 用代理连外网

    设置 /etc/yum.conf 添加proxy=http://web-proxy.corp.xx.com:8080 /etc/yum.repos.d/rhel-source.repo 里面改成ena ...

  5. rt-thread 低优先级线程挂起高优先级线程失败

    @2019-01-13 [小记] 使用rt-thread线程管理功能时,低优先级线程挂起高优先级线程失败,高优先级线程或同等优先级线程挂起低优先级线程则成功.

  6. urllib的实现---请求响应and请求头处理

    在python3中 urllib库和urilib2库合并成了urllib库..其中urllib2.urlopen()变成了urllib.request.urlopen()urllib2.Request ...

  7. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  8. centos7破解安装confluence5.9.11

    应用环境:Confluence是一个专业的企业知识管理与协同软件,也可以用于构建企业wiki.通过它可以实现团队成员之间的协作和知识共享. 安装环境:centos7.3 Java环境 1.7.0_79 ...

  9. Docker部署Jenkins测试环境

    安装docker环境 yum install epel-release -y && yum install docker -y 如果是高手需要docker-compose的话就再装个d ...

  10. DHU--1247 Hat’s Words && HiHocder--1014 Trie树 (字典树模版题)

    题目链接 DHU--1247 Hat’s Words HiHocder--1014 Trie树 两个一个递归方式一个非递归 HiHocoder #include<bits/stdc++.h> ...