https://www.luogu.org/problemnew/show/P1762

题意:给定一个正整数n,请输出杨辉三角形前n行的偶数个数对1000003取模后的结果。

由于N <= 1e15,这就暗示我们这是一道需要打表找规律的图。

年轻的花花以为求偶数个数就应当打偶数个数的表,不料这题的规律在于奇数。

所以一张完整的表应当把偶数个数,偶数个数和,奇数个数,奇数个数和,总数全部表示出来。

当行数为2 ^ k时,该行的奇数为2 ^ k个,即全部为奇数,该行的奇数和为3 ^ k 个。

所以当行数为2 ^ k的形式的时候,可以很容易的通过求和公式算出总个数再减去奇数的方式来计算答案。

现在问题要扩展到行数不满足条件的时候

规律就是将行数分为 p = 2 ^ k1 + 2 ^ k2 ....... + 2 ^kn的形式(kn > kn - 1 > .... > k2 > k1)

易得这样的形式唯一,第p行的奇数和就是 1 * (3 ^ kn) + 2 * (3 ^ kn - 1 ) + ... + pow(2,n - 1) * (3 ^ k1)次。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
inline int read(){int now=;register char c=getchar();for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());return now;}
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = ;
LL N;
int cnt;
LL quick_power(LL a,LL b){
LL ans = ;
while(b){
if(b & ) ans = (ans * a) % mod;
b >>= ;
a = (a * a) % mod;
}
return ans;
}
LL solve(int x){
LL sum = quick_power(,x) * quick_power(,cnt++) % mod;
//cout << x << " " << sum << endl;
return sum;
}
int main(){
Scl(N);
LL ans = ;
cnt = ;
for(int i = ; i >= ; i --){
if(N & (1LL << i)) ans = (ans + solve(i)) % mod;
}
LL sum = (((N + ) % mod) * (N % mod)) / % mod;
sum = ((sum - ans) % mod + mod) % mod;
Prl(sum);
return ;
}

洛谷P1762 杨辉三角,规律的更多相关文章

  1. 816D.Karen and Test 杨辉三角 规律 组合

    LINK 题意:给出n个数,每个数对间进行加或减,结果作为下一层的数,问最后的值为多少 思路:首先我们发现很像杨辉三角,然后考虑如何计算每个数对结果的贡献值,找规律可以发现当数的个数为偶数时,其所在层 ...

  2. java编写杨辉三角

    import java.util.Scanner; /* *计算杨辉三角: * 规律:两边都是1 * 从第三行开始,上一行的前一个元素+与其并排的元素等于下面的元素 * 例如: * 1 * 11 * ...

  3. 洛谷U14200 Changing 题解 【杨辉三角】

    题目描述 有nnn盏灯环形排列,顺时针依次标号为1⋯n1\cdots n1⋯n.初始时刻为000,初始时刻第iii盏灯的亮灭aia_iai​给定,000表示灭,111表示亮.下一时刻每盏灯的亮灭取决于 ...

  4. 杨辉三角 x

    杨辉三角是美丽的数学结晶,其结论往往多蕴含自然之美. ——以下内容均摘抄自题解. 例题: 洛谷P1762  偶数 正如这题所示,数据在n<=10^15的范围内则引导我们去寻找空间更节省,速率更高 ...

  5. 2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?)

    2021.07.19 P2624 明明的烦恼(prufer序列,为什么杨辉三角我没搞出来?) [P2624 HNOI2008]明明的烦恼 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn ...

  6. HDOJ(HDU) 1799 循环多少次?(另类杨辉三角)

    Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次 ...

  7. 基于visual Studio2013解决C语言竞赛题之0509杨辉三角

     题目

  8. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  9. Java数组的应用:案例:杨辉三角,三维数组,字符串数组

    //import java.util.Arrays; //包含Arrays //import java.util.Random; public class HelloWorld { public st ...

随机推荐

  1. JSON 解析 (三)—— FastJSON与Jackson比较

    一.方便性与性能 调用方便性而言: FastJSON提供了大量静态方法,调用简洁方便 Jackson须实例化类,调用相对繁琐,可通过封装成JSON工具类简化调用 性能而言: FastJSON反序列化的 ...

  2. P1427 小鱼念数字

    P1427 题目描述 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个,数字不超过2^32-1),记住了然后反着念出来(表示结束的数字0就不要念出来了) ...

  3. 洛谷P3870开关题解

    我们先看题面,一看是一个区间操作,再看一下数据范围,就可以很轻松地想到是用一个数据结构来加快区间查询和修改的速度,所以我们很自然的就想到了线段树. 但是这个题还跟普通的线段树不一样,这个题可以说要思考 ...

  4. Android大学课件SQLite3 数据库操作

    一.数据库介绍 SQLite3:当有大量相似结构的数据需要存储的时候 . 其实SQLite3 就是一个文件,类似之前学过的MySQL SqlServer等. 二.SQLiteOpenHelper 是一 ...

  5. re 正则表达式

    简介: 1.一堆带有特殊意思的符号组成的式子它的作用 处理(匹配 查找 替换) 字符串 2.在爬虫中大量使用 其实有框架帮你封装了这些复杂的正则 3.在网站和手机APP注册功能中大量使用,例如判断你的 ...

  6. Django+Vue打造购物网站(三)

    商品列表页 通过商品列表页面来学习drf django的view实现商品列表页 在goods目录下新建一个views_base.py文件,用来区分drf的view和Dajngo自带的view的区别 利 ...

  7. 最简单的spring boot web项目

    搭建效果为: 直接在网页输入请求,在页面中显示一行文字:Hello,Spring Boot 与一般的wen项目不同的地方: 1.不需要配置web.xml 文件,但需要注解@SpringBootAppl ...

  8. Android多种方法显示当前日期和时间

    文章选自StackOverflow(简称:SOF)精选问答汇总系列文章之一,本系列文章将为读者分享国外最优质的精彩问与答,供读者学习和了解国外最新技术.本文探讨Android显示当前日期和时间的方法. ...

  9. VSIX 插件右键菜单

    vs2017 插件开发 环境 WIN10 VS2017 CMMT VSIX 参考资源: vs菜单命令ID速查 https://docs.microsoft.com/zh-cn/visualstudio ...

  10. BZOJ2839集合计数

    题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~ ...