http://codeforces.com/problemset/problem/149/D

题意 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的。

  1,每个括号只有三种选择:涂红色,涂蓝色,不涂色。

  2,每对括号有且仅有其中一个被涂色。

  3,相邻的括号不能涂相同的颜色,但是相邻的括号可以同时不涂色。

当dp的状态转移方程实现比较复杂的时候的时候,我们不需要非要写出他的状态转移方程,而是通过dfs的方式实现状态的转移。

这句话在之前写的状压dp三进制解法中出现过 https://www.cnblogs.com/Hugh-Locke/p/9499717.html

想了很久的dp递推式,发现是区间dp的时候依然觉得不能像寻常区间dp一样两端的去扩展,在这种时候可以考虑用dfs去实现

任何括号字符串都可以分为两类 ((((())))) 这样的和 ()()()()()这样的,第一种我们考虑两边层层推入,搜索dfs(l + 1,r - 1)之后去递推。

第二种我们考虑分而治之,分为两边互为独立的括号区间然后合并,比如分为()和()()()()合并的方式是两边相乘。

dp边界,也就是当我们最终把两类简化到不能再简化的时候,都会变成()

区间dp+dfs,又有点像记忆化搜索的方式实现即可。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,len;
char str[maxn];
int link[maxn];
int Stack[maxn];
LL dp[maxn][maxn][][];
void find(){
int cnt = ;
For(i,,len){
if(str[i] == '('){
Stack[++cnt] = i;
}else{
link[i] = Stack[cnt];
link[Stack[cnt--]] = i;
}
}
}
void dfs(int l,int r){
if(l == r - ){
dp[l][r][][] = ;
dp[l][r][][] = ;
dp[l][r][][] = ;
dp[l][r][][] = ;
return;
}
if(link[l] == r){
dfs(l + ,r - );
For(i,,){
For(j,,){
if(i != ) dp[l][r][][] = (dp[l][r][][] + dp[l + ][r - ][i][j]) % mod;
if(i != ) dp[l][r][][] = (dp[l][r][][] + dp[l + ][r - ][i][j]) % mod;
if(j != ) dp[l][r][][] = (dp[l][r][][] + dp[l + ][r - ][i][j]) % mod;
if(j != ) dp[l][r][][] = (dp[l][r][][] + dp[l + ][r - ][i][j]) % mod;
}
}
}else{
int m = link[l];
dfs(l,m); dfs(m + ,r);
For(i,,){
For(j,,){
For(x,,){
For(y,,){
if(j && (j == x)) continue;
dp[l][r][i][y] = (dp[l][r][i][y] + dp[l][m][i][j] * dp[m + ][r][x][y]) % mod;
}
}
}
}
}
}
int main()
{
scanf("%s",str + );
len = strlen(str + );
find();
dfs(,len);
LL sum = ;
For(i,,){
For(j,,){
sum += dp[][len][i][j]; sum %= mod;
}
}
Prl(sum);
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces149D dfs实现区间dp的更多相关文章

  1. Codeforces149D - Coloring Brackets(区间DP)

    题目大意 要求你对一个合法的括号序列进行染色,并且需要满足以下条件 1.要么不染色,要么染红色或者蓝色 2.对于任何一对括号,他们当中有且仅有一个被染色 3.相邻的括号不能染相同的颜色 题解 用区间d ...

  2. HDU 4597 Play Game(DFS,区间DP)

    Play Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total Sub ...

  3. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. hdu 4597 + uva 10891(一类区间dp)

    题目链接:http://vjudge.net/problem/viewProblem.action?id=19461 思路:一类经典的博弈类区间dp,我们令dp[l][r]表示玩家A从区间[l, r] ...

  5. nyoj 737 石子合并(一)。区间dp

    http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你 ...

  6. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  7. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  8. UVA - 10891 Game of Sum 区间DP

    题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...

  9. 2016"百度之星" - 初赛(Astar Round2A) 1004 D Game 区间DP

    D Game Problem Description   众所周知,度度熊喜欢的字符只有两个:B 和D. 今天,它发明了一个游戏:D游戏. 度度熊的英文并不是很高明,所以这里的D,没什么高深的含义,只 ...

随机推荐

  1. 为AI提供数据:构建2017数据创新的总结

    本周在微软年度大会上,我们正在讨论组织如何依靠开发人员创造突破性的经验.随着大数据,云和人工智能的融合,创新与破坏正在加速,从未见过.数据是这一融合核心的关键战略资产.当结合云的无限计算能力和机器学习 ...

  2. Go语言函数相关

    1.函数的声明定义 //func关键字 //getStudent函数名 //(id int, classId int) 参数列表 //(name string,age int) 返回值列表 func ...

  3. 1、linux下对绝对路径和相对路径

    cd /  回到根目录         cd  /etc 回到根目录下的etc 目录下  绝对路径  路径写法是从根目录/ 写起来的. cd . 当前目录 cd .. 上层目录 cd ~回到自家的根目 ...

  4. kubernetes ceph-rbd挂载步骤 类型storageClass

    由于kubelet本身并不支持rbd的命令,所以需要添加一个kube系统插件: 下载插件 quay.io/external_storage/rbd-provisioner 下载地址: https:// ...

  5. 浅析Android设备中grep命令处理流程

    2017-04-18   概述     在TV开发板中,可以在串口中直接使用grep命令.这是因为在/system/bin/下有一个'grep'链接.这个链接指向'/system/bin/toolbo ...

  6. Codeforces1036G Sources and Sinks 【构造】【状态压缩】

    题目分析: 考虑一个源点集合$S$,如果$S$能到的点$T$比$S$小,那么$T$全连到$S$里面,其它点就到不了$T$啦.否则我们全连完后$S$集合被迫扩大,所以总能扩大满. 代码: #includ ...

  7. Codeforces543 B. Destroying Roads

    传送门:>Here< 题意:给出一张无向图(边权为1),并给出两对起点和终点以及距离:s1,t1,l1; s2,t2,l2; 要求删除尽量多的边,使得dis(s1,t1)<=l1, ...

  8. 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)

    先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...

  9. 【XSY1545】直径 虚树 DP

    题目大意 ​ 给你一棵\(n\)个点的树,另外还有\(m\)棵树,第\(i\)棵树与原树的以\(r_i\)为根的子树形态相同.这\(m\)棵树之间也有连边,组成一颗大树.求这棵大树的直径长度. \(n ...

  10. Linux 通过Shell 查找问题进程 [转]

    背景介绍: 最近公司服务器不太稳定,总是在凌晨某个时段突发高负载情况,因为客观环境比较复杂,所以很难猜测出到底是哪个进程出现了问题,加之故障发生时,通常我在睡觉,等我被报警短信吵醒,通过公司 VPN ...