Rikka with Subset HDU - 6092 (DP+组合数)
Yuta has nn positive A1−AnA1−An and their sum is mm. Then for each subset SS of AA, Yuta calculates the sum of SS.
Now, Yuta has got 2n2n numbers between [0,m][0,m]. For each i∈[0,m]i∈[0,m], he counts the number of iis he got as BiBi.
Yuta shows Rikka the array BiBi and he wants Rikka to restore A1−AnA1−An.
It is too difficult for Rikka. Can you help her?
InputThe first line contains a number t(1≤t≤70)t(1≤t≤70), the number of the testcases.
For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104)n,m(1≤n≤50,1≤m≤104).
The second line contains m+1m+1 numbers B0−Bm(0≤Bi≤2n)B0−Bm(0≤Bi≤2n).OutputFor each testcase, print a single line with nn numbers A1−AnA1−An.
It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
Sample Output
1 2
1 1 1
Hint
In the first sample, $A$ is $[1,2]$. $A$ has four subsets $[],[1],[2],[1,2]$ and the sums of each subset are $0,1,2,3$. So $B=[1,1,1,1]$ 题意:一个含有n个数的数组,他们的sum和是m,并且这n个数的所有子集的sum和的个数用一个数组b来表示。
其中b[i] 表示 子集中sum和为i的有b[i]个。现在给你N,M,b数组,让你推出数组a,并输出字典序最小的那一个。 思路:可以知道满足条件的只有一个数集set,所以只需要排序输出就是字典序最小的那个了。
那么如何求数组a呢?,首先我们应该知道,如果有n个0,会产生2^n个sum和为0的集合。
那么数组a中0的数量直接就是log2(b[0])了。
而sum和为1的只需要用所以的sum和为0的集合加上一个1即可,
所以num[1] = b[1]/b[0];
然后定义数组dp[i],表示不用数字i,仅用小于i中的数凑出来sum和为i的集合数量。
那么(b[i]-dp[i])/b[0] 就是Num[i]
求dp[i]的过程中用到dp的思想,细节见代码。
if (dp[j] == ) continue;
if (num[i] == ) break;
这步的代码可以节省时间复杂度。
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = ; while (b) {if (b % )ans = ans * a % MOD; a = a * a % MOD; b /= ;} return ans;}
inline void getInt(int* p);
const int maxn = ;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int t;
int n, m;
ll b[maxn];
int dp[maxn];
int num[maxn];
int c(int n, int m)
{
int sum = ;
for (int i = n - m + ; i <= n; i++) sum *= i;
for (int i = ; i <= m; i++) sum /= i;
return sum;
}
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
// gbtb;
// cin >> t;
scanf("%d", &t);
while (t--)
{
MS0(num);
MS0(dp);
scanf("%d%d", &n, &m);
repd(i, , m)
{
scanf("%lld", &b[i]);
// cin >> b[i];
}
num[] = log2(b[]);
num[] = b[] / b[];
dp[] = b[];
repd(i, , m)
{
for (int j = m; j >= ; j--)
{
if (dp[j] == ) continue;
if (num[i] == ) break;
for (int k = ; k <= num[i]; k++)
{
if (j + k*i <= m)
{
dp[j + k*i] += dp[j] * c(num[i], k);
}
}
}
if (i + <= m)
{
num[i+]=(b[i+]-dp[i+])/b[];
}
}
bool flag = ;
for (int i = ; i <= m; i++)
{
for (int j = ; j <= num[i]; j++)
{
if (!flag) printf("%d", i), flag = ;
else printf(" %d", i);
}
}
puts("");
} return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Rikka with Subset HDU - 6092 (DP+组合数)的更多相关文章
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- HDU 6092 17多校5 Rikka with Subset(dp+思维)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- HDU 6092 Rikka with Subset
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu 6092 Rikka with Subset(逆向01背包+思维)
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 6092`Rikka with Subset 01背包变形
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- 2017杭电多校第五场Rikka with Subset
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- Rikka with Subset
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU 5928 DP 凸包graham
给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...
随机推荐
- Oracle EBS R12 GL_IMPORT_REFERENCES 映射
非原创. 转自出处: http://alloracleapps.com/oracle_apps/gl_import_references-columns-mapping-11i-vs-r12/
- CentOS6.5内 MySQL5.7.19编译安装
作为博主这样的Linux菜鸟,CentOS下最喜欢的就是yum安装.但有时候因为特殊情况(例如被墙等),某些软件可能没办法直接通过yum来安装,这时候我们可以使用编译安装或者直接二进制文件安装. 本博 ...
- 自动化测试基础篇--Selenium判断元素是够存在
摘自https://www.cnblogs.com/sanzangTst/p/8376101.html selenium+python处于学习阶段,功能实现之后开始整理之前写的代码,突然发现一个功能没 ...
- 9. svg学习笔记-裁剪和蒙版
裁剪 在svg中进行剪切,对整个svg元素而言,可以使用<svg>元素的viewbox属性,对于单个元素则可以使用<clipPath>元素.在单个图形元素上使用裁剪,可以在&l ...
- 4.11Python数据处理篇之Matplotlib系列(十一)---图例,网格,背景的设置
目录 目录 前言 (一)图例legend 1.默认不带参数的图例 2.添加参数的图例 3.将图例移动到框外 (二)网格grid 1.说明 2.源代码: 3.输出效果 (三)背景axses 1.设置全局 ...
- zTree获取当前节点的下一级子节点数
使用zTree插件实现树形图中,需要获取当前点击的父节点的子节点数的需求,使用treeNode.children获取子节点数据集合,使用length方法获取集合长度.将当前节点的treeNode传入即 ...
- nginx 拦截 swagger 登录
随着微服务的也来越多,每个服务都有单独的文档,那么问题来了,怎么把所有文档整合在一起呢 本方法采用服务器拦截的方式进行处理 首先需要在opt 的主目录中 /opt/ 创建一个新文件 htpasswd此 ...
- webdriver设置浏览器全屏及设置浏览器窗口为特定大小的方法
from selenium import webdriver driver = webdriver.Chrome() #全屏 driver.maximize_window() #具体大小 driver ...
- nginx: worker process is shutting down
正常情况下,nginx进程状态如下: 当修改配置文件,reload之后: PID=17114的wroker有正在处理的连接,等处理结束,该worker就会退出(退出之前,该worker不会处理新的连接 ...
- ES5-ES6-ES7_Promise对象详解
Promise对象概述(什么是Promise) Promise 是异步编程的一种解决方案,比传统的异步解决方案——回调函数和事件——更合理和更强大 所谓Promise,简单说就是一个容器,里面保存着某 ...