Full Regularization Path for Sparse Principal Component Analysis

背景
懒得说了,毕竟和上一篇作者都是一个人,有特殊的情况是,上次做的复杂度过大,这次降低了复杂度。
Notation

Sparse PCA
在上篇论文里面,也提到了这个式子。上次是用它来进行一个robust的解释,这一次,是来试图解决这个问题。

\(\Sigma_{ii} \quad i=1,2,\ldots,n\),为\(\Sigma\)的特征值,且降序排列。
首先,考虑,\(\rho > \Sigma_{11}\)的时候,

所以,\(z=0\)
再考虑, \(\ro < \Sigma_{11}\),令\(u\in\{0, 1\}^{n}\)

通过最大化\(u\),可得

Semidefinite Relaxation
为了求解上面的问题,需要做一些改变,和上篇论文,思想差不多。


问题是凸的不是凹的,这样没法求最大值。所以(其实没怎么懂),改,


Low Rank Optimization
但是呢,求解这个问题比较费时,所以又转换思路,欲将\(X\)分解,从这以后,我就没怎么看了,所以也不怎么懂(估计看了也不怎么懂。)

Sorting and Thresholding
这里讲怎么选特征?

为了节省计算成本,做了一些改进:

反正我觉得上面俩种方法都蛮蠢的。
Full Regularization Path for Sparse Principal Component Analysis的更多相关文章
- Sparse Principal Component Analysis via Rotation and Truncation
目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...
- Sparse Principal Component Analysis
目录 背景: 部分符号 创新点 文章梗概 The LASSO AND THE ELASTIC NET 将PCA改造为回归问题 定理二 单个向量(无需进行SVD版本) 定理三 多个向量(无需进行SVD, ...
- Generalized Power Method for Sparse Principal Component Analysis
目录 重点 算法 这篇文章,看的晕晕的,但是被引用了400多次了,就简单地记一笔. 这个东西,因为\(\ell_1\)范数,所以会稀疏化,当然,和\(\gamma\)有关. 重点 我想重点写的地方是下 ...
- Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation(Adjusted Variance)
目录 前言 文章概述 固定\(\widetilde{\mathrm{v}}\) 固定\(\widetilde{\mathrm{u}}\) Adjusted Variance 前言 这篇文章用的也是交替 ...
- Dimension reduction in principal component analysis for trees
目录 问题 重要的定义 距离 支撑树 交树 序 tree-line path 重要的性质 其它 Alfaro C A, Aydin B, Valencia C E, et al. Dimension ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
- Robust Principal Component Analysis?(PCP)
目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...
- 《principal component analysis based cataract grading and classification》学习笔记
Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...
- PCA(Principal Component Analysis)主成分分析
PCA的数学原理(非常值得阅读)!!!! PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...
随机推荐
- Linux系统网络文件配置
/etc 一.修改配置文档(需要重启网络配置,永远生效) 1.修改IP地址[MariaDB@db1]$ vi /etc/sysconfig/network-scripts/ifcfg-eth0DEV ...
- 获取url查询参数的方法
/** * 获取url查询参数的方法 * @param name * @returns {null} * @constructor */ function GetQueryString(name) { ...
- c/c++ 编译器提供的默认6个函数
c/c++ 编译器提供的默认6个函数 1,构造函数 2,拷贝构造函数 3,析构函数 4,=重载函数 5,&重载函数 6,const&重载函数 #include <iostream ...
- java 一个实例
this 代替
- 安全之路 —— 使用Windows全局钩子打造键盘记录器
简介 键盘记录功能一直是木马等恶意软件窥探用户隐私的标配,那么这个功能是怎么实现的呢?在Ring3级下,微软就为我们内置了一个Hook窗口消息的API,也就是SetWindowsHookEx函数,这个 ...
- ctf学习(web题二)
web 下面是做bugku上一些web的总结 内容链接
- 强大的Notepad++,竟然还是自由使用的
这么好用的工具,竟然还是可以自由使用的的,当然就不用去找某些软件的破解版了. 除了本身很好用,还有插件功能,插件许多也是自由使用的,利用插件就可以实现程序员需要的一个手工编辑器了.
- 【Java多线程通信】syncrhoized下wait()/notify()与ReentrantLock下condition的用法比较
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6556925.html 一:syncrhoized使用同一把锁的多个线程用通信实现执行顺序的调度 我们知道,使 ...
- 【转】vue父子组件之间的通信
vue父子组件之间的通信 在vue组件通信中其中最常见通信方式就是父子组件之中的通性,而父子组件的设定方式在不同情况下又各有不同.最常见的就是父组件为控制组件子组件为视图组件.父组件传递数据给子组件使 ...
- Scrapy 框架 增量式
增量式: 用来检测网站中数据的更新情况 from scrapy.linkextractors import LinkExtractor from scrapy.spiders import Crawl ...