参考博客:https://blog.csdn.net/qq_35644234/article/details/60875818

题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=2544

例题  hdu 2544

解法1.Dijkstra

复杂度为o(n*n)   n为点的个数

从1点开始贪心地寻找最佳距离

可以求出1号点到其它点的最短距离

核心:拿出某个点时,它得到了最短路径

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=105;
const int INF=1e9+10;
bool ins[maxn];
int ma[maxn][maxn];
int dis[maxn];
int n,m;
void dijkstra()
{ memset(ins,0,sizeof(ins));
for(int i=2;i<=n;i++)
dis[i]=ma[1][i];
dis[1]=0;
ins[1]=1;
while(1)
{
int minn=INF,index;
for(int i=1;i<=n;i++)
{
if(ins[i]==0&&dis[i]<minn)
{
minn=dis[i];index=i;
}
}
if(minn==INF)break;
ins[index]=1;
for(int i=1;i<=n;i++)
{
if(ins[i]==0&&ma[index][i]+dis[index]<dis[i])
dis[i]=ma[index][i]+dis[index];
}
}
printf("%d\n",dis[n]); }
int main()
{ while(scanf("%d %d",&n,&m)==2)
{
if(n==0&&m==0)break;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ma[i][j]=INF;
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
ma[a][b]=min(c,ma[a][b]);
ma[b][a]=min(c,ma[b][a]);
}
dijkstra();
}
return 0;
}

  

解法2.Floyd

复杂度o(n*n*n)

每次插入1个点,更新整个矩阵

可以求出两两之间的最短路径

#include<iostream>
#include<cstdio>
using namespace std;
const int INF=1e9+10;
const int maxn=105;
int ma[maxn][maxn];
int n,m;
void floyd()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
ma[j][k]=min(ma[j][k],ma[j][i]+ma[i][k]);
}
printf("%d\n",ma[1][n]);
}
int main()
{
while(scanf("%d %d",&n,&m)==2)
{
if(n==0&&m==0)break;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ma[i][j]=INF;
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
ma[a][b]=min(ma[a][b],c);
ma[b][a]=min(ma[b][a],c);
}
floyd();
}
return 0;
}

  

解法3.SPFA

复杂度o(n*v)  v为图中边的个数

贪心从1点寻找最短距离

优点是可以计算带有负边的图,缺点,复杂度高

核心:拿出某个点时,它不一定是最优,但可能会松弛其它点

注意:spfa函数中最好使用普通队列,优先队列反而更慢,因为根本是多此一举,每个弹出来的点不一定就是最短的了,所以它可能还是会进入队列

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int maxn=110;
const int INF=1e9+10;
int ma[maxn][maxn],dis[maxn];
bool ins[maxn];
int n,m;
struct Node{
int x;
bool operator < (const Node &a)const
{
return dis[x]<dis[a.x];
}
Node(int a)
{
x=a;
}
};
void spfa()
{
for(int i=1;i<=n;i++)ins[i]=0;
queue<Node>que;
for(int i=1;i<=n;i++)
dis[i]=INF;
dis[1]=0;
que.push(Node(1));
while(que.size())
{
int x=que.front().x;
que.pop();
ins[x]=0;
for(int i=1;i<=n;i++)
{
if(dis[i]>dis[x]+ma[x][i])
{
dis[i]=dis[x]+ma[x][i];
if(ins[i]==0)
{
ins[i]=1;
que.push(Node(i));
}
}
}
}
printf("%d\n",dis[n]);
}
int main()
{
while(scanf("%d %d",&n,&m)==2)
{
if(n==0&&m==0)break;
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)ma[i][j]=INF;
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
ma[a][b]=min(ma[a][b],c);
ma[b][a]=min(ma[b][a],c);
}
spfa();
}
return 0;
}

  

最短路问题 Floyd+Dijkstra+SPFA的更多相关文章

  1. hdu 2066 ( 最短路) Floyd & Dijkstra & Spfa

    http://acm.hdu.edu.cn/showproblem.php?pid=2066 今天复习了一下最短路和最小生成树,发现居然闹了个大笑话-----我居然一直写的是Floyd,但我自己一直以 ...

  2. hdu1595 最短路问题(dijkstra&&spfa)

    find the longest of the shortest Time Limit: 1000/5000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  3. 最短路问题(Bellman/Dijkstra/Floyd)

    最短路问题(Bellman/Dijkstra/Floyd) 寒假了,继续学习停滞了许久的算法.接着从图论开始看起,之前觉得超级难的最短路问题,经过两天的苦读,终于算是有所收获.把自己的理解记录下来,可 ...

  4. 最短路(floyd/dijkstra/bellmanford/spaf 模板)

    floyd/dijkstra/bellmanford/spaf 模板: 1. floyd(不能处理负权环,时间复杂度为O(n^3), 空间复杂度为O(n^2)) floyd算法的本质是dp,用dp[k ...

  5. PKU 1932 XYZZY(Floyd+Bellman||Spfa+Floyd)

    题目大意:原题链接 给你一张图,初始你在房间1,初始生命值为100,进入每个房间会加上那个房间的生命(可能为负),问是否能到达房间n.(要求进入每个房间后生命值都大于0) 解题思路: 解法一:Floy ...

  6. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  7. POJ 1502 MPI Maelstrom( Spfa, Floyd, Dijkstra)

    题目大意: 给你 1到n ,  n个计算机进行数据传输, 问从1为起点传输到所有点的最短时间是多少, 其实就是算 1 到所有点的时间中最长的那个点. 然后是数据 给你一个n 代表有n个点, 然后给你一 ...

  8. Dijkstra、Dij + heap、Floyd、SPFA、 SPFA + SLF Template

    Dijkstra in Adjacency matrix : int Dijkstra(int src,int tec, int n){ ]; ]; memset(done,,sizeof(done) ...

  9. 最短路知识点总结(Dijkstra,Floyd,SPFA,Bellman-Ford)

    Dijkstra算法: 解决的问题: 带权重的有向图上单源最短路径问题.且权重都为非负值.如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法. 思路: 如果存在一条从i ...

随机推荐

  1. Navicat Premium 连接oracle ORA-01017:用户名/口令无效;登陆被拒绝

    解决的方法就是将用户名改成system

  2. replace函数使用方法

    Replace函数的含义~ 用新字符串替换旧字符串,而且替换的位置和数量都是指定的. replace函数的语法格式 =Replace(old_text,start_num,num_chars,new_ ...

  3. 《Java大学教程》—第14章 抽象、继承和接口

    自测题:1.    解释抽象和抽象数据类型的概念.P333抽象的概念是仅仅关注对象可以完成什么工作,而不必担心如何完成工作的细节.类模板通常被称为抽象数据类型.因为这类数据暴露给用户的所有信息仅仅是方 ...

  4. hTML 如何在不同页面上传递参数( 1 )

    (1).一种是重定向跳转,超连<a>就是一种重定向跳转,这样的跳转request对象是传不到下一个页面的,下一个页面得到的request对象是一个新的对象,而不是上一个页面传过来的就得不到 ...

  5. MySQL高级知识(一)——基础

    前言:MySQL高级知识主要来自尚硅谷中MySQL的视频资源.对于网上视频资源来说,尚硅谷是一个非常好的选择.通过对相应部分的学习,笔者可以说收益颇丰,非常感谢尚硅谷. 1.关于MySQL的一些文件 ...

  6. 写了12年JS也未必全了解的连续赋值运算

    引子 var a = {n:1}; var b = a; // 持有a,以回查 a.x = a = {n:2}; alert(a.x);// --> undefined alert(b.x);/ ...

  7. 【转】android SDK中的ddms使用详解

    一.查看线程信息1.展开左侧设备节点,选择进程: 2.点击更新线程信息图标: 注意:如果你没有运行或调试程序的话,这些图标是不可用的! 3.右侧选择“Threads”标签: 二.查看堆栈信息1.展开左 ...

  8. python的格式化输出

    Python的格式化输出有两种: 一.类似于C语言的printf的方法 二.类似于C#的方法

  9. 一、Oracle 安装

    一.oracle的安装和链接1.oracle数据库的后台服务: a.Oracle11ghomeTNSListener:数据库服务器的监听程序,负责监听客户端的链接请求 b.OracleServiceO ...

  10. WPF(一)

    什么是WPF WPF(Windows Presentation Foundation)是用于Windows的现代图形显示系统.与之前出现的技术相比,WPF发生了根本性变化.WPF引用了"内置 ...