Codeforces 521C (经典)组合数取模【逆元】
<题目链接>
<转载于 >>> >
题目大意:
给出一串n个数字,让你在这串数字中添加k个 ' + ' 号(添加后表达式合法),然后所有拆分所得的所有合法表达式之和。
解题分析:
首先,暴力的做法肯定是不可行的,复杂度必然爆炸。然后来考虑怎么求每个数字在最终结果里的贡献呢。我们这n个数字有n-1个空位置,来放置k个' + '号,不论哪一种放置方法,每个数字都要在这种情况里出现一次,但是出现时所充当的分位是不同的,这就是统计贡献的地方!再由于每个数字都是不同的单独的,所以单独考虑每个数字可能所成为的位数时不会出现重复。
第n位:只能充当某个数字的个位有C(n-1,k)种个位情况
第n-1位:能充当个位(加号必须放一个在它后面才它能成为个位),能充当十位(加号必须放一个在它后面的后面才能使他成为十位并且他和个位之间不能放置东西) 个位:C(n-2,k-1) 十位:C(n-2,k)
第n-2位:同理 个位:C(n-2,k-1) 十位:C(n-3,k-1) 百位:C(n-3,k)
.........
也就是说:
倒数第一位:贡献了C(n-1,k)次个位数
倒数第二位:贡献了C(n-2,k-1)次个位数,C(n-2,k)次十位数
倒数第三位:贡献了C(n-2,k-1)次个位数,C(n-3,k-1)次十位数,C(n-3,k)次百位数
倒数第四位:贡献了C(n-2,k-1)次个位数,C(n-3,k-1)次十位数,C(n-4,k-1)次百位数,C(n-4,k)次千位数
........
倒数第n位:贡献了C(n-2,k-1)次个位数,C(n-3,k-1)次十位数,C(n-4,k-1)次百位数,C(n-4,k)次千位数......C(n - n,k)次n位数
所以我们预处理一下组合数C(x,k-1)和C(x,k),类似求个前缀和就可以啦!
核心部分:
倒数第一位:C(n-1,k)*s[n]
倒数第二位:C(n-2,k-1)*s[n-1] + C(n-2,k)*10*s[n-1]
倒数第三位:(C(n-2,k-1) + C(n-3,k-1)*10)*s[n-2] + C(n-3,k)*100*s[n-2]
倒数第四位:(C(n-2,k-1) + C(n-3,k-1)*10 + C(n-4,k-1)*100)*s[n-3] + C(n-4,k)*1000*s[n-3]
...........
所以可以看出,每一位数字的前部分(红色)和是从第n位累和过来的,后部分(绿色)是单独处理的,所以我们可以从第n位,开始往前循环每一位到第一位,累前缀和求和即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
const int M = 1e5+;
const int mod = 1e9+;
using namespace std;
typedef long long ll;
ll fac[M],inv[M],sum[M],a[M];
char s[M];
int n,k;
ll ans,mult;
ll mod_pow(ll x,ll n){
x%=mod;
ll res = ;
while(n>){
if(n&) res = res*x%mod;
x = x*x%mod;
n>>=;
}
return res;
}
void init(){
inv[]=;fac[]=;
for(int i=;i<=n;i++){
fac[i] = (fac[i-]*i)%mod;
inv[i] = mod_pow(fac[i],mod-)%mod; //费马小定理预处理记录 i! 的逆元
}
}
ll C(ll n,ll m){
if(n<||m<) return ;
if(m>n) return ;
return (((fac[n]*inv[m])%mod)*inv[n-m])%mod; //计算组合数C(n,m), n!*(m!的逆元)*((n-m)!的逆元)
}
int main()
{
scanf("%d%d",&n,&k);
init();
scanf("%s",s+);
for(int i=;i<=n;i++)
a[i] = s[i]-'';
mult = ;
for(int i=n-;i>=;i--){
sum[i] = (sum[i+]+mult*C(i-,k-))%mod; //计算该数位为红色部分的贡献,因为红色部分这一位与这一位+1的贡献有关,所以可以求部分前缀和,简化计算
mult = (mult*)%mod;
}
mult = ;
for(int i=n;i>=k+;i--){
sum[i] = (sum[i]+C(i-,k)*mult)%mod;//计算该位数绿色部分的贡献
mult = (mult*)%mod;
}
ans = ;
for(int i=;i<=n;i++)
ans = (ans+sum[i]*a[i])%mod; //乘上每个位数上的数
printf("%lld\n",ans);
}
2018-10-09
Codeforces 521C (经典)组合数取模【逆元】的更多相关文章
- HDU 5698 大组合数取模(逆元)
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- lucas定理解决大组合数取模
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
随机推荐
- Confluence 6 管理站点模板
模板是一个预先定义的页面,这个预先定义的页面可以在创建新页面的时候预先载入.模板可以由用户创建也可以通过蓝图提供.请查看 Page Templates 和 Blueprints 页面中的内容. 管理员 ...
- metaclass(元类)
一.创建类的执行流程 二.元类的认识 什么是元类呢?在Python3中继承type的就是元类 二.元类的示例 方式一: # 方式一 class MyType(type): '''继承type的就是元类 ...
- HighCharts基本使用
一.简叙 HighCharts是一个非常强大的画图插件,在以后的工作汇报,数字展示,它将是一把利器.既然是插件,那么就有它的使用规则,我们只需要遵循它的使用规则,就可以画出我们想要的展示效果了.期待吗 ...
- XSS-HTML&javaSkcript&CSS&jQuery&ajax-CSS
CSS 1.表单的处理 <style> table, td, th{ border:1px; solid green;} th{ background-color:green; color ...
- python(9): GUI
实例1: 对输入的所有数字求和, 最后以. 结束输入 def fun(): list1=[] print('input a number:') while True: num=input() if n ...
- 第五周学习总结-HTML5
2018年8月12日 暑假第五周,我把HTML剩余的一些标签和用法看完了并学了一些HTML5的标签及用法. HTML5比HTML多了一些元素,也删去了一些元素. HTML5新增元素 图形元素 < ...
- python selenium-webdriver 生成测试报告
测试最后的一个重要的过程就是生成一份完整的测试报告,生成测试报告的主要是通过python的一个第三方模块HTMLTestRunner.py生成,但是生成的测试报告不是特别的美观,而且没有办法统计测试结 ...
- 牛客寒假算法基础集训营4 I题 Applese 的回文串
链接:https://ac.nowcoder.com/acm/contest/330/I 来源:牛客网 自从 Applese 学会了字符串之后,精通各种字符串算法,比如--判断一个字符串是不是回文串. ...
- mysql集群7.4.1
一:mysql集群原理: 1 mysql集群分为三个节点: 1.1 控制节点:本身不提供服务只是控制整个集群的开启与关闭 1.2 数据节点:真正提供数据库的存储,并和其他数据节点关联用 1.3 sql ...
- 下载中间件--随机IP代理以及随机User_Agent
下载中间件随机IP代理以及随机User_Agent 1.在settings.py中设置开启代理功能 # 设置下载中间件 DOWNLOADER_MIDDLEWARES = { # 随机的 User-Ag ...