题目大意

  给你一颗trie树,令\(s_i\)为点\(i\)到根的路径上的字符组成的字符串。求\(max_{u\neq v}(LCP(s_u,s_v)+LCS(s_u,s_v))\)

  \(LCP=\)最长公共前缀,\(LCS=\)最长公共后缀

  \(1\leq n\leq 200000\),字符集为\(\{0\ldots 300\}\)

题解

  我们先看看这个\(LCP(s_u,s_v)\)怎么求

  广义后缀自动机不行。广义后缀树可能可以,但我不会。广义后缀数组可以。然后我就开始手推广义后缀数组

  广义后缀数组:和后缀数组类似,求出\(s_i\)的排名以及\(LCP(s_{sa_{}i-1},s_{sa_i})\)

  实现也和后缀数组类似,倍增,把两段\(2^{i-1}\)的信息合并成\(2^i\)的信息。另外还要保存\(s_i\)的长度为\(2^j\)的前缀在所有字符串的长度为\(2^j\)的前缀中的排名。

  求完\(sa_i\)和\(rk_i\)后,我们用二分+哈希求\(LCP(s_{sa_{i-1}},s_{sa_i})\)。上面保存下来的所有长度为\(2^j\)的前缀的排名可以当哈希值来用(考场上我写了哈希)。然后用st表来维护区间最小值。现在我们可以\(O(1)\)求出\(LCP(s_u,s_v)\)了

  考虑以\(x\)为根的子树,若\(u,v\)在\(x\)的不同子树内,则\(LCS(s_u,s_v)=d_x-1\)。这里\(d_x\)为点\(x\)的深度,根的深度为1。

  因为\(LCP(s_{sa_{i-1}},s_{sa_i})\geq LCP(s_{sa_x},s_{sa_y})~(x\leq i-1<i\leq y)\),所以我们只用求出以\(rk_i\)为关键字排序后相邻两个点的\(LCP\)。这个可以用线段树维护。然后线段树合并即可。

  时间复杂度:\(O(n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
struct list
{
int v[200010];
int t[200010];
int w[200010];
int h[200010];
int n;
list()
{
n=0;
memset(h,0,sizeof h);
}
void clear()
{
n=0;
memset(h,0,sizeof h);
}
void add(int x,int y,int z)
{
n++;
v[n]=y;
t[n]=h[x];
w[n]=z;
h[x]=n;
}
};
list l,l2;
int f[200010][20];
ll hs[200010][20];
int d[200010];
int e[200010]; int sa[200010];
int rk[200010];
int sx[200010];
int sy[200010];
int b[200010]; ll mod=1000000007;
ll pw[200010];
int ht[200010];
int st[200010][20];
int lo[200010];
int rt[200010];
int n;
int getmin(int x,int y)
{
int t=lo[y-x+1];
return min(st[x][t],st[y-(1<<t)+1][t]);
}
int query(int x,int y)
{
// x=rk[x];
// y=rk[y];
if(x==y)
return 0x3fffffff;
if(x>y)
swap(x,y);
return getmin(x+1,y);
}
namespace seg
{
struct p
{
int s,first,last,sz;
p()
{
s=first=last=sz=0;
}
};
int cnt;
int ls[4000010];
int rs[4000010];
p s[4000010];
void init()
{
memset(ls,0,sizeof ls);
memset(rs,0,sizeof rs);
cnt=0;
}
p mt(p a,p b)
{
if(!a.sz)
return b;
if(!b.sz)
return a;
p c;
c.sz=a.sz+b.sz;
c.first=a.first;
c.last=b.last;
c.s=max(max(a.s,b.s),query(a.last,b.first));
return c;
}
int insert(int p,int x,int l,int r)
{
if(!p)
p=++cnt;
if(l==r)
{
s[p].sz=1;
s[p].first=s[p].last=x;
return p;
}
int mid=(l+r)>>1;
if(x<=mid)
ls[p]=insert(ls[p],x,l,mid);
else
rs[p]=insert(rs[p],x,mid+1,r);
s[p]=mt(s[ls[p]],s[rs[p]]);
return p;
}
int merge(int x,int y)
{
if(!x||!y)
return x+y;
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
s[x]=mt(s[ls[x]],s[rs[x]]);
return x;
}
};
int ans=0;
void solve(int x)
{
rt[x]=seg::insert(rt[x],rk[x],1,n);
int i;
for(i=l.h[x];i;i=l.t[i])
{
solve(l.v[i]);
rt[x]=seg::merge(rt[x],rt[l.v[i]]);
}
if(seg::s[rt[x]].sz>1)
ans=max(ans,d[x]-1+seg::s[rt[x]].s);
}
int main()
{
memset(rt,0,sizeof rt);
seg::init();
int i,j,x,y;
pw[0]=311;
for(i=1;i<=50;i++)
pw[i]=pw[i-1]*pw[i-1]%mod;
freopen("recollection.in","r",stdin);
freopen("recollection.out","w",stdout);
memset(f,0,sizeof f);
scanf("%d",&n);
d[1]=1;
e[1]=310;
hs[1][0]=310;
for(i=2;i<=n;i++)
{
scanf("%d%d",&x,&y);
l.add(x,i,y);
f[i][0]=x;
d[i]=d[x]+1;
e[i]=y+1;
hs[i][0]=e[i];
for(j=1;j<=18;j++)
{
f[i][j]=f[f[i][j-1]][j-1];
hs[i][j]=(hs[f[i][j-1]][j-1]*pw[j-1]+hs[i][j-1])%mod;
}
}
int sz=310,k,o;
for(i=1;i<=sz;i++)
b[i]=0;
for(i=1;i<=n;i++)
b[sx[i]=e[i]]++;
for(i=2;i<=sz;i++)
b[i]+=b[i-1];
for(i=n;i>=1;i--)
sa[b[sx[i]]--]=i;
for(j=1;(1<<j)<=n;j++)
{
l2.clear();
k=0;
for(i=1;i<=n;i++)
if(d[sa[i]]>(1<<(j-1)))
l2.add(f[sa[i]][j-1],sa[i],0);
for(i=1;i<=n;i++)
for(o=l2.h[sa[i]];o;o=l2.t[o])
sy[++k]=l2.v[o];
for(i=1;i<=n;i++)
if(d[i]<=(1<<(j-1)))
sy[++k]=i;
for(i=1;i<=sz;i++)
b[i]=0;
for(i=1;i<=n;i++)
b[sx[sy[i]]]++;
for(i=2;i<=sz;i++)
b[i]+=b[i-1];
for(i=n;i>=1;i--)
sa[b[sx[sy[i]]]--]=sy[i];
k=0;
swap(sx,sy);
for(i=1;i<=n;i++)
if(i!=1&&sy[sa[i]]==sy[sa[i-1]]&&((d[sa[i]]<=(1<<(j-1))&&d[sa[i-1]]<=(1<<(j-1)))||(d[sa[i]]>(1<<(j-1))&&d[sa[i-1]]>(1<<(j-1))&&sy[f[sa[i]][j-1]]==sy[f[sa[i-1]][j-1]])))
sx[sa[i]]=k;
else
sx[sa[i]]=++k;
if(k>=n)
break;
sz=k;
}
for(i=1;i<=n;i++)
rk[sa[i]]=i;
ht[0]=0;
for(i=2;i<=n;i++)
{
x=sa[i-1];
y=sa[i];
int now=0;
for(j=18;j>=0;j--)
if(d[x]-1>=(1<<j)&&d[y]-1>=(1<<j)&&hs[x][j]==hs[y][j])
{
now+=(1<<j);
x=f[x][j];
y=f[y][j];
}
ht[i]=now;
}
for(i=1;i<=n;i++)
st[i][0]=ht[i];
for(j=1;j<=18;j++)
for(i=1;i+(1<<j)-1<=n;i++)
st[i][j]=min(st[i][j-1],st[i+(1<<(j-1))][j-1]);
lo[1]=0;
for(i=2;i<=n;i++)
lo[i]=lo[i/2]+1;
solve(1);
printf("%d\n",ans);
return 0;
}

【XSY1551】往事 广义后缀数组 线段树合并的更多相关文章

  1. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  2. CF 666E Forensic Examination——广义后缀自动机+线段树合并

    题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...

  3. 【CF666E】Forensic Examination - 广义后缀自动机+线段树合并

    广义SAM专题的最后一题了……呼 题意: 给出一个长度为$n$的串$S$和$m$个串$T_{1\cdots m}$,给出$q$个询问$l,r,pl,pr$,询问$S[pl\cdots pr]$在$T_ ...

  4. Codeforces 666E Forensic Examination(广义后缀自动机+线段树合并)

    将所有串(包括S)放一块建SAM.对于询问,倍增定位出该子串所在节点,然后要查询的就是该子串在区间内的哪个字符串出现最多.可以线段树合并求出该节点在每个字符串中的出现次数. #include<b ...

  5. Codeforces.666E.Forensic Examination(广义后缀自动机 线段树合并)

    题目链接 \(Description\) 给定串\(S\)和\(m\)个串\(T_i\).\(Q\)次询问,每次询问\(l,r,p_l,p_r\),求\(S[p_l\sim p_r]\)在\(T_l\ ...

  6. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  7. BZOJ3413: 匹配(后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...

  8. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

  9. 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)

    点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...

随机推荐

  1. H5 30-CSS元素的显示模式

    30-CSS元素的显示模式 我是div 我是段落 我是标题 我是span 我是加粗 我是强调 <!DOCTYPE html><html lang="en"> ...

  2. hdu5943素数间隙与二分匹配

    题意: 给出n和s,匹配(s+1,s+2,s+3......s+n)和(1,2,3,4,5........n)让(s+x)%x==0,判断是否有解 思路: 先用程序跑一边,发现1到1e9得素数间隙小于 ...

  3. 关于对于system函数和c++标准下的新的变量定义方式{}

  4. 使用publisher模式控制频繁的UI输出,避免Winform界面假死

    http://www.cnblogs.com/Charltsing/p/publisher.html 最近测试task并发任务的效率与线程池的区别,发现了另外一个问题.task建立任务的速度很快,输出 ...

  5. 计算Java List中的重复项出现次数

    import java.util.ArrayList;import java.util.HashMap;import java.util.Iterator;import java.util.List; ...

  6. [iOS]改变UIAlertController的标题、内容的字体和颜色

    https://www.jianshu.com/p/51949eec2e9c 2016.03.23 22:36* 字数 272 阅读 37401评论 54喜欢 72 在开发中,弹出框是必不可少的,通常 ...

  7. I/O中断处理详细过程

    1.CPU发送启动I/O设备的命令,将I/O接口中的B触发器置1,D触发器置O. 2.设备开始工作,需要向CPU传送数据时,将数据送入数据缓冲器中. 3.输入设备向I/O接口发出“设备工作结束”的信号 ...

  8. mysql_linux(centos7 mysql 5.7.19)

    centos7  mysql 5.7.19安装 1.解压文件 [root@centos3 ~]# tar -zxvf mysql-5.7.19-linux-glibc2.12-x86_64.tar.g ...

  9. Collections斗地主案例

    package com.zhangxueliang.doudizhu; import java.util.ArrayList; import java.util.Collections; public ...

  10. python中random模块

    random与numpy.random对比: 1.random.random():生成[0,1)之间的随机浮点数: numpy.random.random():生成[0,1)之间的随机浮点数: num ...