CRT and exlucas
CRT
解同余方程,形如\(x \equiv c_i \ mod \ m_i\),我们对每个方程构造一个解满足:
对于第\(i\)个方程:\(x \equiv 1 \ mod \ m_i\),\(x \equiv \ 0 \ mod \ m_j\)\((j!=i)\)
最后\(ans=\sum{x_i*c_i}\ mod \ M\)
其中\(M=\prod m_i\)
考虑构造\(x_i\),我们解同余方程\(\frac{M}{m_i}x\equiv 1\ mod \ m_i\)
所以\(x\)为\(inv(\frac{M}{m_i},m_i)\),最终\(x_i=inv(\frac{M}{m_i},m_i)*mi\)
所以\(ans=\sum c_i*(M/m_i)*inv(\frac{M}{m_i},m_i) \ mod M\)
扩欧合并同余方程
合并两个同余方程
\[\begin{cases}
x \equiv r_1 \pmod {m_1}\\
x \equiv r_2 \pmod {m_2}
\end{cases}\]
我们令\(x=m_1*k_1+r_1=m_2*k_2+r_2\),所以\(m_1*k_1-m_2*k_2=r_2-r_1\),我们只要解出一组\[(k1,k2)\],用扩欧解即可,解出来带入原方程即可得到\(x_0\),方程变为\(x\equiv x_0\ mod \ lcm(m1,m2)\)。
exLucas
不想写了,你可以看这里
CRT and exlucas的更多相关文章
- 4.18 省选模拟赛 无聊的计算器 CRT EXBSGS EXLucas
算是一道很毒瘤的题目 考试的时候码+调了3h才搞定. op==1 显然是快速幂. op==2 有些点可以使用BSGS 不过后面的点是EXBSGS. 这个以前学过了 考试的时候还是懵逼.(当时还是看着花 ...
- Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...
- Luogu2183 礼物 ExLucas、CRT
传送门 证明自己学过exLucas 这题计算的是本质不相同的排列数量,不难得到答案是\(\frac{n!}{\prod\limits_{i=1}^m w_i! \times (n - \sum\lim ...
- [CSP-S模拟测试]:visit(组合数学+exLucas+CRT)
题目传送门(内部题6) 输入格式 第一行包含两个整数$T$,$MOD$:第二行包含两个整数$n$,$m$,表示$dirty$房子的位置. 输出格式 一行一个整数,表示对$MOD$取模之后的答案. 样例 ...
- bzoj3129[Sdoi2013]方程 exlucas+容斥原理
3129: [Sdoi2013]方程 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 582 Solved: 338[Submit][Status][ ...
- [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 扩展卢卡斯定理(Exlucas)
题目链接 戳我 前置知识 中国剩余定理(crt)或扩展中国剩余定理(excrt) 乘法逆元 组合数的基本运用 扩展欧几里得(exgcd) 说实话Lucas真的和这个没有什么太大的关系,但是Lucas还 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
随机推荐
- Python_匿名函数
匿名函数:为了解决那些功能很简单的需求而设计的一句话函数. 代码如下: 1 正常函数: 2 3 def calc(n): 4 5 return n ** n 6 7 print(calc(10)) 8 ...
- 自定义threading.local
1.threading相关. # Author:Jesi # Time : 2018/12/28 14:21 import threading import time from threading i ...
- React不同版本之间需要注意的地方
React Fiber react fiber指的是react16.0机器之后的版本,相对于之前的版本来说,这一个版本的更新做了很多的优化,所以和之前的版本中的用法可能会发生不同,所以,平常开发中,主 ...
- selenium模拟登陆淘宝
from selenium import webdriver import time from selenium.webdriver.common.by import By from selenium ...
- Python3练习题 011:成绩打分
# print('-----判断输入值和60大小判断')# b=int(input('input num'))# if b >60:# print('良')# elif b==60:# prin ...
- vue组件封装选项卡
<template> <myMenu :arr='arr' :arrcontent='content'></myMenu> </template> &l ...
- JS 类型检测
typeof 适合函数对象和基本类型的判断 typeof 100instanceof 适合判断对象类型 obj instanceof Object 基于原型链判断操作符,若做操作符不是对象,则会直接返 ...
- Flutter的Appbar
actions → List一个 Widget 列表,代表 Toolbar 中所显示的菜单,对于常用的菜单,通常使用 IconButton 来表示:对于不常用的菜单通常使用PopupMenuButto ...
- Flutter的scope_model使用mixin语法报错
在pubspec.yaml同级目录下创建analysis_options.yaml文件,内容: # https://www.dartlang.org/guides/language/analysis- ...
- java学习之—数组的曾删改查
/** * 数组的曾删改查 * Create by Administrator * 2018/6/8 0008 * 上午 9:54 **/ public class HighArray { priva ...