题目描述

对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

分析

关于cdq分治第一篇学习笔记可以戳一下右边:【传送门】
简单的cdq分治,我不会树套树,所以就用cdq分治来做一下。
很明显的是,有答案贡献的都是\(time[i]<time[j]\)且\(val[i]<val[j]\)且\(pos[i]>pos[j]\)。
以及\(time[i]<time[j]\)以及\(val[i]>val[j]\)且\(pos[i]<pos[j]\),那么三维偏序就可以解决了。

ac代码

#include <bits/stdc++.h>
#define ll long long
#define N 100005
using namespace std;
struct BIT{
    #define lowbit(x) (x&-x)
    int n, tr[N];
    void add(int x, int val) {
        for (; x <= n; x += lowbit(x)) tr[x] += val;
    }
    int query(int x) {
        int res = 0;
        for (; x; x -= lowbit(x)) res += tr[x];
        return res;
    }
}tr;
struct Que {
    int cnt, v, d, id, t;
}q[N << 1];
int n, m;
ll ans[N];
int a[N], pos[N];
bool cmp(const Que &a, const Que &b) {
    return a.d < b.d;
}
void cdq(int l, int r) {
    if (l == r) return;
    int mid = (l + r) >> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    sort(q + l, q + mid + 1, cmp);
    sort(q + mid + 1, q + 1 + r, cmp);
    int l1 = l, l2 = mid + 1;
    while (l2 <= r) {
        while (l1 <= mid && q[l1].d <= q[l2].d) tr.add(q[l1].v, q[l1].cnt), ++ l1;
        ans[q[l2].id] += q[l2].cnt * (tr.query(n) - tr.query(q[l2].v));
        l2 ++;
    }
    for (int i = l; i < l1; i ++) tr.add(q[i].v, -q[i].cnt);
    l1 = r; l2 = mid;
    while (l1 > mid) {
        while (l2 >= l && q[l2].d >= q[l1].d) tr.add(q[l2].v, q[l2].cnt), -- l2;
        ans[q[l1].id] += q[l1].cnt * tr.query(q[l1].v - 1);
        l1 --;
    }
    for (int i = mid; i > l2; i --) tr.add(q[i].v, -q[i].cnt);
}
int main() {
    scanf("%d%d", &n, &m);
    int tot = 0;
    tr.n = n;
    for (int i = 1; i <= n; i ++) {
        scanf("%d", &a[i]);
        pos[a[i]] = i;
        q[++ tot] = (Que){1, a[i], i, 0, tot};
    }
    for (int i = 1; i <= m; i ++) {
        int x; scanf("%d", &x);
        q[++ tot] = (Que){-1, x, pos[x], i, tot};
    }
    cdq(1, tot);
    for (int i = 1; i <= m; i ++) ans[i] += ans[i - 1];
    for (int i = 0; i < m; i ++) printf("%lld\n", ans[i]);
    return 0;
}

[luogu3157][bzoj3295][CQOI2011]动态逆序对【cdq分治+树状数组】的更多相关文章

  1. bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)

    3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...

  2. BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组

    BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一 ...

  3. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

  4. BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治

    题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 1 ...

  5. BZOJ3295:[CQOI2011]动态逆序对(CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  6. 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治

    [BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...

  7. [CQOI2011]动态逆序对 CDQ分治

    洛谷上有2道相同的题目(基本是完全相同的,输入输出格式略有不同) ---题面--- ---题面--- CDQ分治 首先由于删除是很不好处理的,所以我们把删除改为插入,然后输出的时候倒着输出即可 首先这 ...

  8. 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治

    题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...

  9. BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]

    RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...

  10. bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组

    [bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...

随机推荐

  1. 学习mongoDB的一些感受(转自:http://blog.csdn.net/liusong0605/article/details/11581019)

    曾经使用过mongoDB来保存文件,最一开始,只是想总结一下在开发中如何实现文件与mongoDB之间的交互.在此之前,并没有系统的了解过mongoDB,虽然知道我们用它来存储文件这些非结构化数据,但是 ...

  2. semantic-ui 输入框

    1.标准输入框 semantic-ui中定义输入框需要将input标签包含于另外一个标签内,外层标签的class为ui input,注意外层标签可以是div,span.p.i. <div cla ...

  3. Nginx负载均衡各种配置方式

    Nginx负载均衡 - 小刚qq - 博客园http://www.cnblogs.com/xiaogangqq123/archive/2011/03/04/1971002.html Module ng ...

  4. oracle事务的四个特性(ACID)

    事务产生的背景 当在PL/SQL中同时操作多个SQL语句,比如通过DML语句添加.修改或删除数据时,如何确保数据库数据不会因为意外而倒置错误数据是一个非常重要的问题. 以仓库发料系统为例,如果某一张领 ...

  5. K8S集群 NOT READY的解决办法 1.13 错误信息:cni config uninitialized

    今天给同事 一个k8s 集群 出现not ready了 花了 40min 才搞定 这里记录一下 避免下载 再遇到了 不清楚. 错误现象:untime network not ready: Networ ...

  6. mysql关联、子查询索引优化

    1.驱动表:加索引不起作用,因为全表扫描.表1 left join 表2 ,此时表1是驱动表 被驱动表:给这个加索引.  关联查询  子查询时 尽量不使用not in 或者not exists 而是用 ...

  7. Golang的select多路复用以及channel使用实践

    看到有个例子实现了一个类似于核弹发射装置,在发射之前还是需要随时能输入终止发射. 这里就可以用到cahnnel 配合select 实现多路复用. select的写法用法有点像switch.但是和swi ...

  8. GitHub & OAuth 2.0 & JWT

    GitHub & OAuth 2.0 & JWT https://www.rfcreader.com/#rfc6749 GitHub & OAuth https://www.b ...

  9. video maker & video tutorials

    video maker & video tutorials 视频课程制作工具 https://ke.qq.com/agency/personal/intro.html 成为网络老师 https ...

  10. php配置-解决大数据超多字段的POST方式提交无法完全接受的问题

    例如:在盘点表的数据提交中出现了POST大量数据超多字段的将近2000个字段,部分字段没有接受:修改方法为修改php.ini 将max_input_var调大,该值默认为1000 max_input_ ...