MT【278】二次齐次化
对于$c>0$,当非零实数$a,b$满足$4a^2-2ab+4b^2-c=0,$且使$|2a+b|$最大时,$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}$的最小值为_____

分析:此类题要知道方法是很简单的,重在平时积累,此题是2014年的高考填空压轴题,和2008年华约自招三一题类似.
构造$(2a+b)^2-k(4a^2-2ab+4b^2)=0$,令$\dfrac{a}{b}=t$, 得
$(4-4k)t^2+(4+2k)t+1-4k=0$令$\Delta =0$得$k=0$或$k=\dfrac{8}{5}$,
易知$k=\dfrac{8}{5}$时$(2a+b)^2$有最大值$\dfrac{8}{5}c$,
容易知道取到最大值时$a=\dfrac{3}{2}b,c=10b^2$故$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}=\dfrac{1}{2b^2}-\dfrac{2}{b}\ge-2$
MT【278】二次齐次化的更多相关文章
- MT【180】齐次化+换元
已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____ 解答:$\textbf{方法一}$由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$ ...
- MT【4】坐标平移后齐次化
简答:通过坐标平移可以将A点移到原点,设BC:mx’+ny’=1,联立坐标变换后的椭圆方程和BC,将$\frac{y}{x}$看成斜率k,得到关于k的一元二次方程,由题意两根之积为-1,可得.
- c#数字图像处理(二)彩色图像灰度化,灰度图像二值化
为加快处理速度,在图像处理算法中,往往需要把彩色图像转换为灰度图像,在灰度图像上得到验证的算法,很容易移植到彩色图像上.24位彩色图像每个像素用3个字节表示,每个字节对应着R.G.B分量的亮度(红.绿 ...
- 《Linux命令行与shell脚本编程大全》第十二章 使用结构化命令
许多程序要就对shell脚本中的命令施加一些逻辑控制流程. 结构化命令允许你改变程序执行的顺序.不一定是依次进行的 12.1 使用if-then语句 如下格式: if command then ...
- 流畅python学习笔记:第十二章:子类化内置类型
子类化内置类型 在python2.2之后,内置类型都可以子类化,但是有一个注意事项:内置类型不会调用用户定义的类覆盖的特殊方法.这个说起来比较绕口,什么意思呢.我们来看下下面的代码: class Do ...
- 二、vue组件化开发(轻松入门vue)
轻松入门vue系列 Vue组件化开发 五.组件化开发 1. 组件注册 组件命名规范 组件注册注意事项 全局组件注册 局部组件注册 2. Vue调试工具下载 3. 组件间数据交互 父组件向子组件传值 p ...
- hdu 2795 线段树(二维问题一维化)
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Skyline 二次实现单体化模型选择查询示例代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or ...
- MT【173】齐次消元单变量
已知$x\ge0,x^2+(y-2)^2=1,W=\dfrac{3x^2+2\sqrt{3}xy+5y^2}{x^2+y^2}$,求$W$的最值. 提示:$x\ne0$时,设$t=\dfrac{y}{ ...
随机推荐
- vuex原理
Vuex 框架原理与源码分析 vuex状态管理到底是怎样一个原理? 状态管理 Vuex框架原理与源码分析 Vuex实现原理解析 Vue刚出不久,Vuex 就出来了,想请教下Vuex做了什么事情? 个人 ...
- Maven指定编译级别
maven默认的编译水平是1.5 单个项目单独设置 如果需要在某个项目中指定编译级别,可以在项目的pom.xml文件中配置,如下: <build> <plugins> < ...
- Es5中的类和静态方法 继承
Es5中的类和静态方法 继承(原型链继承.对象冒充继承.原型链+对象冒充组合继承) // es5里面的类 //1.最简单的类 // function Person(){ // this.name='张 ...
- tomcat启动参数
/usr/java/jdk1..0_191-amd64/bin/java -Djava.util.logging.config./conf/logging.properties -Djava.util ...
- MySQL根据某个字段查询重复的数据
select count(*) '个数',mobile '手机号',`name` '用户名' from users group by mobile having(count(*) > 1); = ...
- [转帖]SUSE Linux
历经坎坷多次易主,SUSE Linux路在何方? http://blog.itpub.net/11310314/viewspace-2638811/ 之前一直理不清楚 SUSE和RedHat的关系 甚 ...
- 腾讯机试题 AcWing 603 打怪兽
题目链接:https://www.acwing.com/problem/content/605/ 题目大意: 略 分析: 用dp[i][j]表示用j元钱能在前i只怪兽上所能贿赂到的最大武力值. 有一种 ...
- 运行pip报错:Fatal error in launcher: Unable to create process using '"'
参考: https://blog.csdn.net/cjeric/article/details/73518782
- 浅谈WPF中的PreviewTextInput
今天在使用TextBox的TextInput事件的时候,发现无论如何都不能触发该事件,然后百思不得其解,最后在MSDN上找到了答案:TextInput 事件可能已被标记为由复合控件的内部实现进行处理. ...
- ConnectTimeout和ReadTimeout所代表的意义
参考:ConnectTimeout和ReadTimeout所代表的意义 ConnectTimeout 指的是建立连接所用的时间,适用于网络状况正常的情况下,两端连接所用的时间. 在java中,网络状况 ...