【BZOJ1419】Red is good 期望DP
题目大意
桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到\(1\)美元,黑牌则付出\(1\)美元。可以随时停止翻牌,在最优策略下平均能得到多少钱。
\(0\leq R,B\leq 5000\)
题解
设\(f_{i,j}\)为还剩下\(i\)张红牌和\(j\)张黑牌时的最大收益。每次可以选择翻或者不翻。
f_{i,0}&=i\\
f_{0,i}&=0\\
f_{i,j}&=\max(0,\frac{i(f_{i-1,j}+1)+j(f_{i,j-1}-1)}{i+j})
\end{align}
\]
最后答案是\(f_{R,B}\)
辣鸡出题人卡空间要用滚动数组才能过
时间复杂度:\(O(RB)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double f[2][5010];
int main()
{
// freopen("bzoj1419.in","r",stdin);
int n,m;
scanf("%d%d",&n,&m);
int i,j;
int t=0;
for(i=0;i<=n;i++)
{
t^=1;
f[t][0]=i;
for(j=1;j<=m;j++)
f[t][j]=max(0.,(f[t^1][j]+1)*double(i)/(i+j)+(f[t][j-1]-1)*double(j)/(i+j));
}
ll s=f[t][m]*1000000;
printf("%lld.%.6lld\n",s/1000000,s%1000000);
return 0;
}
【BZOJ1419】Red is good 期望DP的更多相关文章
- 【BZOJ1419】 Red is good [期望DP]
Red is good Time Limit: 10 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description 桌面上有R张红牌和B张 ...
- BZOJ 1419 Red is good ——期望DP
定义f[i][j]表示还剩i张红牌,j张黑牌的时候能取得的期望最大值 显然有$f[i][j]=max(0,\frac {i}{i+j}(f[i-1][j]+1)+ \frac {j}{i+j}(f[i ...
- BZOJ 1419: Red is good 期望dp
数学期望可以理解成一个 DAG 模型. Code: #include <bits/stdc++.h> #define N 5003 #define ll long long #define ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
随机推荐
- python 可调用对象之类实例
可调用对象,即任何可以通过函数操作符()来调用的对象. python可调用对象大致可以分为4类: 1.函数 python中有三种函数:内建函数(BIFs).用户自定义函数(UDF).lambda表达式 ...
- Appium-处理系统弹窗
前言: 最近在搞appium自动化,iOS的系统弹窗是大家都会遇到的,本文来总结处理这种弹窗的用法. 环境: MacOS:10.13.4 Appium-desktop:1.6.1 Xcode:9.3. ...
- 机器学习第一篇——最近邻kNN
机器学习监督学习中,根据解决问题的连续性和离散型,分为分类问题和回归问题.最邻近算法kNN是一种最为直接和简便的分类方法. kNN本质上,是计算目标到模型的欧式距离,从而判定目标所属的类别. 首先,在 ...
- BeautifulSoup库
'''灵活又方便的网页解析库,处理高效,支持多种解析器.利用它不用编写正则表达式即可方便的实现网页信息的提取.''' BeautifulSoup库包含的一些解析库: 解析库 使用方法 优势 劣势 py ...
- adb通过wifi连接android设备
问题背景 近期的项目测试中,需要将移动设备与厂商机器进行usb连接视频传输(投屏).测试过程中需要定位问题,经常需要查看实时日志,移动设备已经和厂商机器usb连接投屏,无法用usb连接到PC,那么有什 ...
- 让Apache和Nginx支持php-fpm模块
Apache 对于Apache,首先是apache的安装,可以参考下面这篇博客:编译安装Apache 编辑apache配置文件,取消下面这两行的注释(删除前面的#): #LoadModule prox ...
- 解决scrapy报错:ModuleNotFoundError: No module named 'win32api'
ModuleNotFoundError: No module named 'win32api' 表示win32api未安装 解决办法: 下载对应python版本的win32api,并安装. 下载地址: ...
- 四、Object.defineProperty总结
Object.defineProperty() 参考:https://segmentfault.com/a/1190000007434923 定义: 方法会直接在一个对象上定义一个新属性,或者修改一个 ...
- vs2012密钥
Microsoft Visual Studio Ultimate 2012 旗舰版 有效注册密钥:YKCW6-BPFPF-BT8C9-7DCTH-QXGWC:KCW6-BPFPF-BT8C9-7DCT ...
- Django框架导读
1.虚拟环境的安装 2.web应用 C/S B/S 架构 3.http协议介绍 4.状态码 5.原生socket 6.框架演变 7.项目演变 一.虚拟环境安装 什么是虚拟环境? 1.对真实环境的一个 ...