递归反转

二分查找

AVL树

  1. AVL简单的理解,如图所示,底部节点为1,不断往上到根节点,数字不断累加。
  2. 观察每个节点数字,随意选个节点A,会发现A节点的左子树节点或右子树节点末尾,数到A节点距离之差不会超过1
  3. 一旦添加一个数,使得二叉树结构,存在节点两边子树差大于1,若是右子树大,则左旋;左子树大,则右旋。
  4. 旋转规则关键节点就是这个A节点,右子树大,则A节点变为左子树,右子节点替代A节点位置并指向A

红黑树

  1. 节点是红色或黑色。
  2. 根节点是黑色。
  3. 每个叶子节点都是黑色的空节点(NIL节点)。
  4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
  5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

参考 https://www.sohu.com/a/201923614_466939

伸展树 - Splay

  1. 在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法, 在每次查找之后对树进行调整,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生。伸展树是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去
  2. 插入,查找,删除都会经过搬运到树根的过程

哈希表插入 - hash

字典树Trie

基数树 - Radix Tree

三元搜索树 - Ternary Search Tree

B树

  1. B树的平衡性很好,一个节点的最大数量取决于阶数

B+树

  1. B+树相比B树查询效率更高

    1. b+树的中间节点不保存数据,所以磁盘页能容纳更多节点元素,更“矮胖”;
    2. b+树查询必须查找到叶子节点,b树只要匹配到即可不用管元素位置,因此b+树查找更稳定(并不慢);
    3. 对于范围查找来说,b+树只需遍历叶子节点链表即可,b树却需要重复地中序遍历

数据结构图解(递归,二分,AVL,红黑树,伸展树,哈希表,字典树,B树,B+树)的更多相关文章

  1. 算法设计和数据结构学习_5(BST&AVL&红黑树简单介绍)

    前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second ed ...

  2. BST&AVL&红黑树简单介绍

    (BST&AVL&红黑树简单介绍) 前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm ...

  3. jdk1.8HashMap底层数据结构:散列表+链表+红黑树,jdk1.8HashMap数据结构图解+源码说明

    一.前言 本文由jdk1.8源码整理而得,附自制jdk1.8底层数据结构图,并截取部分源码加以说明结构关系. 二.jdk1.8 HashMap底层数据结构图 三.源码 1.散列表(Hash table ...

  4. 数据结构与算法(十):红黑树与TreeMap详细解析

    本文目录 一.为什么要创建红黑树这种数据结构 在上篇我们了解了AVL树,既然已经有了AVL这种平衡的二叉排序树,为什么还要有红黑树呢? AVL树通过定义我们知道要求树中每一个结点的左右子树高度差的绝对 ...

  5. 简述树,Trie,Avl,红黑树

    树的表示方法 在平时工作中通常有2种方式来表示树状结构,分别是孩子链表示法和父节点表示法.光说名词可能无法让人联系到实际场景中,但是写出代码之后大家一定就明白了. 孩子链表示法,即将树中的每个结点的孩 ...

  6. JAVA中的数据结构 - 真正的去理解红黑树

    一, 红黑树所处数据结构的位置: 在JDK源码中, 有treeMap和JDK8的HashMap都用到了红黑树去存储 红黑树可以看成B树的一种: 从二叉树看,红黑树是一颗相对平衡的二叉树 二叉树--&g ...

  7. java数据结构和算法06(红黑树)

    这一篇我们来看看红黑树,首先说一下我啃红黑树的一点想法,刚开始的时候比较蒙,what?这到底是什么鬼啊?还有这种操作?有好久的时间我都缓不过来,直到我玩了两把王者之后回头一看,好像有点儿意思,所以有的 ...

  8. 【Java】 大话数据结构(13) 查找算法(4) (散列表(哈希表))

    本文根据<大话数据结构>一书,实现了Java版的一个简单的散列表(哈希表). 基本概念 对关键字key,将其值存放在f(key)的存储位置上.由此,在查找时不需比较,只需计算出f(key) ...

  9. Java数据结构与算法(21) - ch09红黑树(RB树)

    红-黑规则1. 每一个节点不是红色的就是黑色的2. 根总是黑色的3. 如果节点是红色的,则它的子节点必须是黑色的:如果节点是黑色的,其子节点不是必须为红色.4. 从根到叶节点或空子节点的每条路径,必须 ...

  10. 对于AVL树和红黑树的理解

    AVL又称(严格)高度平衡的二叉搜索树,也叫二叉查找树.平衡二叉树.window对进程地址空间的管理用到了AVL树. 红黑树是非严格平衡二叉树,统计性能要好于平衡二叉树.广泛的在C++的STL中,ma ...

随机推荐

  1. ASP.NET Core 项目简单实现身份验证及鉴权

    ASP.NET Core 身份验证及鉴权 目录 项目准备 身份验证 定义基本类型和接口 编写验证处理器 实现用户身份验证 权限鉴定 思路 编写过滤器类及相关接口 实现属性注入 实现用户权限鉴定 测试 ...

  2. 关于egg.js的安全延伸思考

    我看到全部的安全基于围绕http来操作,那么如果我只用websocket传输数据,是不是就会好很多?

  3. MySQL解压包的安装教程

    一.下载MySQL解压包 解压过的文件夹里面是没有 data 文件夹的. 二.创建文件 1.在根目录下创建 my.ini文件 内容如下: [mysqld] # 设置mysql的安装目录 basedir ...

  4. 面试简单整理之zookeeper

    157.zookeeper 是什么? ZooKeeper 是一个开源的分布式协调服务,由雅虎创建,是 Google Chubby 的开源实现. 分布式应用程序可以基于 ZooKeeper 实现诸如数据 ...

  5. 服务管理之openssh

    1. 使用 SSH 访问远程命令行 1.1 OpenSSH 简介 OpenSSH这一术语指系统中使用的Secure Shell软件的软件实施.用于在远程系统上安全运行shell.如果您在可提供ssh服 ...

  6. windbg排查大内存

    现在都是用windbg preview,安装比较麻烦了,还要配置环境变量, 并且每次分析前要先执行 !analyze - v !eeheap -gc !DumpHeap -min 500 000002 ...

  7. Task与线程池

    尽量使用Task,而不是线程池 因为Task是基于线程的,单不是一一对应的 Task的切换与开销要比线程小很多,也更容易管理 http://www.cnblogs.com/yunfeifei/p/41 ...

  8. css firefox火狐浏览器下的兼容性问题

    1.DOCTYPE 影响 CSS 处理 2.FF: div 设置 margin-left, margin-right 为 auto 时已经居中, IE 不行 3.FF: body 设置 text-al ...

  9. PYTHON基础入门(内置函数、推导式)学习

    **内建函数**1.通过使用dir()函数可以列出所具备的方法 例:num = 10 dir(num) 例:myList = [1,2,3,4,5,6] dir(num)2.通过使用help()函数可 ...

  10. union: php/laravel command

    #########Laravel###############2018-01-09 16:46:26 # switch to maintenance mode php artisan down # s ...