ECDSA数字签名算法
一、ECDSA概述
椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线密码(ECC)对数字签名算法(DSA)的模拟。ECDSA于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。它在1998年既已为ISO所接受,并且包含它的其他一些标准亦在ISO的考虑之中。与普通的离散对数问题(discrete logarithm problem DLP)和大数分解问题(integer factorization problem IFP)不同,椭圆曲线离散对数问题(elliptic curve discrete logarithm problem ECDLP)没有亚指数时间的解决方法。因此椭圆曲线密码的单位比特强度要高于其他公钥体制。
数字签名算法(DSA)在联邦信息处理标准FIPS中有详细论述,称为数字签名标准。它的安全性基于素域上的离散对数问题。椭圆曲线密码(ECC)由Neal Koblitz和Victor Miller于1985年发明。它可以看作是椭圆曲线对先前基于离散对数问题(DLP)的密码系统的模拟,只是群元素由素域中的元素数换为有限域上的椭圆曲线上的点。椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题(ECDLP)的难解性。椭圆曲线离散对数问题远难于离散对数问题,椭圆曲线密码系统的单位比特强度要远高于传统的离散对数系统。因此在使用较短的密钥的情况下,ECC可以达到于DL系统相同的安全级别。这带来的好处就是计算参数更小,密钥更短,运算速度更快,签名也更加短小。因此椭圆曲线密码尤其适用于处理能力、存储空间、带宽及功耗受限的场合
二、ECDSA原理
ECDSA是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。
签名过程如下:
1、选择一条椭圆曲线Ep(a,b),和基点G;
2、选择私有密钥k(k<n,n为G的阶),利用基点G计算公开密钥K=kG;
3、产生一个随机整数r(r<n),计算点R=rG;
4、将原数据和点R的坐标值x,y作为参数,计算SHA1做为hash,即Hash=SHA1(原数据,x,y);
5、计算s≡r - Hash * k (mod n)
6、r和s做为签名值,如果r和s其中一个为0,重新从第3步开始执行
验证过程如下:
1、接受方在收到消息(m)和签名值(r,s)后,进行以下运算
2、计算:sG+H(m)P=(x1,y1), r1≡ x1 mod p。
3、验证等式:r1 ≡ r mod p。
4、如果等式成立,接受签名,否则签名无效。
三、JDK中对于ECDSA的实现
特别注意的是:ECDSA签名算法,只是在JDK1.7之后才有实现,最常见的场景是在微软的产品的安装的产品密钥的设计
1、KeyPairGenerator
KeyPairGenerator 类用于生成公钥和私钥对。密钥对生成器是使用 getInstance 工厂方法(返回一个给定类的实例的静态方法)构造的。
特定算法的密钥对生成器可以创建能够与此算法一起使用的公钥/私钥对。它还可以将特定于算法的参数与每个生成的密钥关联。
有两种生成密钥对的方式:与算法无关的方式和特定于算法的方式。
下面我们将按照指定ECDSA算法去生成秘钥KeyPairGenerator.getInstance("EC");
2、ECDSAPublicKey
ECDSA公用密钥的接口
3、ECDSAPublicKey
ECDSA 专用密钥的接口
4、PKCS8EncodedKeySpec
PKCS8EncodedKeySpec类继承EncodedKeySpec类,以编码格式来表示私钥。
PKCS8EncodedKeySpec类使用PKCS#8标准作为密钥规范管理的编码格式
5、Signature
Signature 类用来为应用程序提供数字签名算法功能。数字签名用于确保数字数据的验证和完整性。
在所有算法当中,数字签名可以是 NIST 标准的 ECDSA,它使用 ECDSA 和 SHA-1。可以将使用 SHA-1 消息摘要算法的 ECDSA 算法指定为SHA1withECDSA。
四、实现
其中ECDSA的实现步骤类似于我们之前学习的RSA数字签名算法
实现步骤
第一步:初始化化秘钥组,生成ECDSA算法的公钥和私钥
第二步:执行私钥签名, 使用私钥签名,生成私钥签名
第三步:执行公钥签名,生成公钥签名
第四步:使用公钥验证私钥签名
备注:所谓的公钥与私钥匙成对出现。 遵从的原则就是“私钥签名、公钥验证”。
示例代码如下:
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec; /**
* 椭圆曲线签名算法
*
* 速度快 强度高 签名短
*
* 实现方 JDK1.7/BC
*/
public class ECDSAUtil { private static String str = "hello"; public static void main(String[] args) {
jdkECDSA();
} public static void jdkECDSA() { try {
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("EC");
keyPairGenerator.initialize(256); KeyPair keyPair = keyPairGenerator.generateKeyPair();
ECPublicKey ecPublicKey = (ECPublicKey) keyPair.getPublic();
ECPrivateKey ecPrivateKey = (ECPrivateKey) keyPair.getPrivate(); // 2.执行签名
PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(ecPrivateKey.getEncoded());
KeyFactory keyFactory = KeyFactory.getInstance("EC"); PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec);
Signature signature = Signature.getInstance("SHA1withECDSA");
signature.initSign(privateKey); signature.update(str.getBytes());
byte[] sign = signature.sign(); // 验证签名
X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(ecPublicKey.getEncoded());
keyFactory = KeyFactory.getInstance("EC");
PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec);
signature = Signature.getInstance("SHA1withECDSA");
signature.initVerify(publicKey);
signature.update(str.getBytes()); boolean bool = signature.verify(sign);
System.out.println(bool); } catch (Exception e) {
e.printStackTrace();
}
}
}
五、ECDSA标准
ECDSA的标准和标准草案有很多,其中已经过颁发部门批准的有:ANSI X9.62 ,FIPS 186-2,IEEE 1363-2000,ISO 14888-3。ECDSA也被密码标准化组织(SECG,这是一个从事密码标准通用性潜力研究的组织)加以标准化。
主要的ECDSA标准
1.ANSI X9.62
该项目始于1995年,并于1999年正式作为ANSI标准颁布。ANSI X9.62具有高安全性和通用性。它的基域可以是Fp,也可以是F2m。F2m中的元素可以以多项式形式或正规基形式来表示。若用多项式形式,ANSI X9.62要求模多项式为不可约三项式,标准中提供了一些不可约三项式,另外还给出了一个不可约五项式。为了提高通用性,针对每一个域提供了一个模多项式。若使用正规基表示方法,ANSI X9.62规定使用高斯正规基。椭圆曲线最主要的安全因素是n,即基点阶,ANSI X9.62的n大于2160。椭圆曲线是使用随机方法选取的。ANSI X9.62规定使用以字节为单位的字符串形式来表示曲线上的点,ASN.1语法可以清楚地描述域参数,公钥和签名。
2.FIPS 186-2
1997年,NIST开始制定包括椭圆曲线和RSA签名算法的FIPS 186标准。1998年,NIST推出了FIPS186,它包括RSA与DSA数字签名方案,这个方案也称为FIPS 186-1。1999年NIST又面向美国G0vment推出了15种椭圆曲线。这些曲线都遵循ANSI X9.62和IEEE 1363-2000的形式。2000年,包含ANSI X9.62中说明的ECDSA,使用上述曲线的FIPS 186-2问世。
3. IEEE 1363-2000
该标准于2000年作为IEEE标准问世。IEEE 1363的覆盖面很广,包括公钥加密,密钥协商,基于IFP、DLP、ECDLP的数字签名。它与ANSI X9.62和FIPS 186完全不同,它没有最低安全性限制(比如不再对基点阶进行限制),用户可以有充分的自由。
因此IEEE 1363-2000并不是一个安全标准,也不具有良好的通用性,它的意义在于给各种应用提供参照。它的基域可以是,也可以是。 中的元素可以以多项式形式或正规基形式来表示。中元素表示形式是整数,中元素表示形式是字符串。这与ANSI X9. 62和FIPS 186是一致的。
4.ISO/IEC 14888-3
这个标准包含若干签名算法,其中ECDSA部分与ANSI X9.62一致。
如果大家有兴趣可以研究下,ECDSA算法在比特币中用法。
ECDSA数字签名算法的更多相关文章
- 第十四章 数字签名算法--RSA
注意:本节内容主要参考自 <Java加密与解密的艺术(第2版)>第9章“带密钥的消息摘要算法--数字签名算法” <大型分布式网站架构(设计与实践)>第3章“互联网安全架构” 1 ...
- Java数字签名算法--RSA
签名具有的特性: 安全性 抗否认性 数字签名:带有密钥(公钥.私钥)的消息摘要算法(使用私钥进行签名,使用公钥进行验证) 数字签名算法:RSA.DSA.ECDSA 数字签名特性: 验证数据完整性 认证 ...
- JAVA加解密 -- 数字签名算法
数字签名 – 带有密钥的消息摘要算法 作用:验证数据完整性.认证数据来源.抗否认(OSI参考模型) 私钥签名,公钥验证 RSA 包含非对称算法和数字签名算法 实现代码: //1.初始化密钥 KeyPa ...
- .NET Core加解密实战系列之——消息摘要与数字签名算法
目录 简介 功能依赖 消息摘要算法 MD算法 家族发展史 应用场景 代码实现 MD5 示例代码 SHA算法 应用场景 代码实现 SHA1 SHA256 示例代码 MAC算法 HMAC算法的典型应用 H ...
- 数字签名算法rsa
数字签名算法消息传递模型 由消息发送方构建密钥对,这里由甲方完成. 由消息发送方公布公钥至消息接收方,这里由甲方将公钥公布给乙方. 注意如加密算法区别,这里甲方使用私钥对数据签名,数据与签名形成一则消 ...
- 数字签名算法--3.ECDSA
package Imooc; import java.security.KeyFactory; import java.security.KeyPair; import java.security.K ...
- RSA/SHA1加密和数字签名算法在开放平台中的应用
加密算法 加密算法分为两大类:1.对称加密算法:2.非对称加密算法. 密钥个数 加密 解密 对称加密 一个 使用密钥加密 使用同一个密钥解密 非对称加密 两个,公钥和私钥 使用其中一把密钥加密 使 ...
- java-信息安全(十)-数字签名算法DSA
概述 信息安全基本概念: DSA算法(Digital Signature Algorithm,数据签名算法) DSA Digital Signature Algorithm (DSA)是Schnorr ...
- java基础---->数字签名算法的介绍
数字签名(又称公钥数字签名)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法.关于数字签名的介绍,可以参见百度百科:http://baike.baidu.c ...
随机推荐
- web配置详细解释
<?xml version="1.0"?> <!--注意: 除了手动编辑此文件以外,您还可以使用 Web 管理工具来配置应用程序的设置.可以使用 Visual S ...
- CVTE C/C++开发工程师笔试题(一)
问题描述: 字符串组装. 现在需要将一些数据格式不同的数据组装成一个char型字符串输出,数据来源包含一个char型的字符串,一个short型的16进制数据: 举例: 假若定义如下2个变量: 1.ch ...
- 52-2018 蓝桥杯省赛 B 组模拟赛(一)java
最近蒜头君喜欢上了U型数字,所谓U型数字,就是这个数字的每一位先严格单调递减,后严格单调递增.比如 212212 就是一个U型数字,但是 333333, 9898, 567567, 313133131 ...
- Vue的从入门到放弃
此贴仅记录vue学习路程中遇见的大大小小,形形色色的问题 1. vue自动打开浏览器配置: 当使用vue 脚手架搭建项目后启动npm run dev,会出现 但是不会自动打开浏览器的,这时候去con ...
- Pytorch之训练器设置
Pytorch之训练器设置 引言 深度学习训练的时候有很多技巧, 但是实际用起来效果如何, 还是得亲自尝试. 这里记录了一些个人尝试不同技巧的代码. tensorboardX 说起tensorflow ...
- rpm --rebuilddb
rpm -ivh .....rpm 报Bus Error rpm --rebuilddb
- python requests与aiohttp 速度对比
环境:centos7 python3.6 测试网址:www.bai.com 测试方式:抓取百度100次 结果: aio: 10.702147483825684srequests: 12.4046785 ...
- python爬虫-上期所持仓排名数据爬取
摘要:笔记记录爬取上期所持仓数据的过程,本次爬取使用的工具是python,使用的IDE是pycharm 一.查看网页属性,分析数据结构 在浏览器中打开上期所网页,按F12或者选择表格文字-右键-审查元 ...
- vue-cli 第一章
一.安装 Node.Python.Git.Ruby 这些都不讲解了 二.安装 Vue-Cli # 最新稳定版本 # 全局安装 npm install --global vue-cli # 创 ...
- 1-spring boot 入门
我从08年到现在,毕业马山就10年了,一直从事.net平台开发工作(期间应该有1年时间从事java开发). 一.为什么要转java: 1.目前市场很多招聘java架构师的职位,且薪资都不错,但.net ...