Even if you are not a functional programmer, the notion of product type should be familiar to you, e.g., Pair<A, B> in Java is a product type of A and B. But the definition in category theory is not that easy to comprehend. Here is how it is defined on Wikipedia:

Let C be a category with some objects X1 and X2. A product of X1 and X2 is an object X (often denoted X1 × X2) together with a pair of morphisms π1 : X → X1, π2 : X → X2 that satisfy the following universal property: for every object Y and pair of morphisms f1 : Y → X1, f2 : Y → X2 there exists a unique morphism f : Y → X1 × X2 such that the following diagram commutes:

Why is it defined that way and how do we interpret it? Let me translate it into something that Java programmers can understand. The definition actually says, if X1 x X2 is a product type of X1 and X2 with two functions π1 : X -> X1 and π2 : X -> X2, there must be a unique function f : Y -> X1 × X2 which satisfies the property: for any value y of type Y, function f1 : Y -> X1 and a function f2 : Y -> X2, the equations π1(f(y)) == f1(y) and π2(f(y)) == f2(y) must always be true.

In other words, if I define my product type as usual like:

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
} public X1 getX1() {
return x1;
} public X2 getX2() {
return x2;
}
}

There must be a unique f which is constructed by:

// Java
Function<Y, Pair<X1, X2>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y), f2.apply(y));
}

In other words, product type guarantees that if you have a function of type Y -> X1 and a function of type Y -> X2, you must have a unique function of type Y -> X1 x X2 satisfying the property. The property can be expressed programatically as: for any y, f1 and f2, the following test must pass.

// Java
void testProductType(Y y, Function<Y, X1> f1, Function<Y, X2> f2) {
Function<Y, Pair<X1, X2>> f = makeF(f1, f2);
assert(f.apply(y).getX1() == f1.apply(y));
assert(f.apply(y).getX2() == f2.apply(y));
}

So what could be a counterexample? Here is:

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
} public X1 getX1() {
return 1;
} public X2 getX2() {
return 2;
}
}

With this wrong definition of product type, you cannot possibly construct such a f which satisfies the universal property, i.e., there are always some cases which can make the test fail.

If you think it is done, here comes the tricky part, is the type below a product type?

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(T x1, U x2) {
this.x1 = x1;
this.x2 = x2;
} public T getX1() {
return x1 + 1;
} public T getX2() {
return x2 + 2;
}
}

Intuition may tell you it is not a product type, but by definition of product type in the category theory, it actually is. Why? Because you can define a unique f satisfying the property:

// Java
Function<Y, Pair<X, Y>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y) - 1, f2.apply(y) - 2);
}

What this means is that, the two product types are equivalent in category theory. This is because category theory defines equivalence by structure, if two things have the same structure, they are considered the same thing.

Then, what about sum type (a.k.a coproduct type)? The definition in category theory is:

Let C be a category and let X1 and X2 be objects in that category. An object is called the coproduct of these two objects, written X1 ∐ X2 or X1 ⊕ X2 or sometimes simply X1 + X2, if there exist morphisms i1 : X1 → X1 ∐ X2 and i2 : X2 → X1 ∐ X2 satisfying a universal property: for any object Y and morphisms f1 : X1 → Y and f2 : X2 → Y, there exists a unique morphism f : X1 ∐ X2 → Y such that f1 = f ∘ i1 and f2 = f ∘ i2. That is, the following diagram commutes:

From program perspective, the definition says, if X1 ∐ X2 is a sum type of X1 and X2 with two functions i1 : X1 -> X1 ∐ X2 and i2 : X2 → X1 ∐ X2, there must be a unique function f : X1 ∐ X2 -> Y which satisfies the property: for any value y : Y, function f1 : X1 -> Y and function f2 : X2 -> Y, the equations f(i1(y)) == f1(y) and f(i2(y)) == f2(y) must always be true.

If I define sum type as below:

// Java
class Either<X1, X2> {
private final Optional<X1> x1;
private final Optional<X2> x2; private Either(Optional<X1> x1, Optional<X2> x2) {
this.x1 = x1;
this.x2 = x2;
} public static Either<X1, X2> left(X1 x1) {
return new Either(Optional.of(x1), Optional.absent());
} public static Either<X1, X2> right(X2 x2) {
return new Either(Optional.absent(), Optional.of(x2));
} public Optional<T> getX1() {
return x1;
} public Optional<U> getX2() {
return x2;
}
}

There must be a unique f which is constructed by:

// Java
Function<Either<X1, X2>, Y> makeF(Function<X1, Y> f1, Function<X2, Y> f2) {
return (Either<X1, X2> e) -> e.getX1().isPresent() ? f1.apply(e.getX1().get()) : f2.apply(e.getX2().get());
}

In other words, sum type guarantees that if you have a function of type X1 -> Y and a function of type X2 -> Y, you must have a unique function of type X1 ∐ X2 -> Y satisfying the property. The property can be verified programatically as: for any x1, x2, f1, f2 the following tests must pass.

// Java
void testSumType(X1 x1, X2 x2, Function<X1, Y> f1, Function<X2, Y> f2) {
assert(f.apply(Either.left(x1)) == f1.apply(x1));
assert(f.apply(Either.left(x2)) == f2.apply(x2));
}

To sum up, category theory defines product and sum type by requiring them to be able to construct such a function which satisfies a universal property.

Product and Sum in Category Theory的更多相关文章

  1. Category Theory: 01 One Structured Family of Structures

    Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...

  2. 【leetcode】1281. Subtract the Product and Sum of Digits of an Integer

    题目如下: Given an integer number n, return the difference between the product of its digits and the sum ...

  3. [Leetcode] 5279. Subtract the Product and Sum of Digits of an Integer

    class Solution { public int subtractProductAndSum(int n) { int productResult = 1; int sumResult = 0; ...

  4. Spring学习笔记2——创建Product对象,并在其中注入一个Category对象

    第一步:创建Product类.在Product类中有对Category对象的set和get方法 package com.spring.cate; public class Product { priv ...

  5. Web API开发实例——对产品Product进行增删改查

    1.WebApi是什么 ASP.NET Web API 是一种框架,用于轻松构建可以由多种客户端(包括浏览器和移动设备)访问的 HTTP 服务.ASP.NET Web API 是一种用于在 .NET ...

  6. Haskell语言学习笔记(39)Category

    Category class Category cat where id :: cat a a (.) :: cat b c -> cat a b -> cat a c instance ...

  7. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  8. 对话机器学习大神Yoshua Bengio(下)

    对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun ...

  9. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

随机推荐

  1. Java中的属性和方法

    题目 实体类 测试类

  2. 微信x5内核很鸡贼啊

    最近在写一个支付项目,然后要打通微信和支付宝支付,本来后端联调的时候直接调用weixin://wxpay/bizpayurl?XXXX接口就行的,完全走着通,然后到项目验收了就炸了,点不进去了,最后改 ...

  3. Visual Studio Installer 使用案例

    1.创建自定义操作 一步:新建“安装程序类”文件 2.重写函数: public override void Install(IDictionary stateSaver) { base.Install ...

  4. FastDFS api介绍

    1. 命令行api介绍 FastDFS提供了可用于运维测试的命令行api,下面进行介绍: 1.1 fastdfs服务管理 tracker进程服务管理脚本 /etc/init.d/fdfs_tracke ...

  5. java 实现udp通讯

    需求:应用A(通常有多个)和应用B(1个)进行 socket通讯,应用A必须知道应用B的ip地址(在应用A的配置文件中写死的),这个时候就必须把应用B的ip设成固定ip(但是某些时候如更换路由后要重新 ...

  6. win10修改TXT文件的关联软件

    打开注册表,按下面路径找: HKEY_CLASSES_ROOT -> txtfile -> shell -> open -> command 在右边可以看到一个默认文件,原来的 ...

  7. 涂色(CQOI2007)

    --BZOJ1260_区间dp Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:R ...

  8. windbg排查大内存

    现在都是用windbg preview,安装比较麻烦了,还要配置环境变量, 并且每次分析前要先执行 !analyze - v !eeheap -gc !DumpHeap -min 500 000002 ...

  9. 【MyBatis-Spring】Mybatis和并入Spring框架

    1.参考书籍:<深入浅出MyBatis技术原理与实战> 2.知识基础:Spring.Mybatis.Spring MVC. 配置数据源 配置SqlSessionFactory SqlSes ...

  10. Chapter4_控制执行流程

    总结java中所有的与流程控制有关的知识 (1)表达式判断 Java中只允许true或者false来作为判断条件,不允许用0或者非0值作为判断条件. (2)if-else 与流程密切相关的语句,决定了 ...