Even if you are not a functional programmer, the notion of product type should be familiar to you, e.g., Pair<A, B> in Java is a product type of A and B. But the definition in category theory is not that easy to comprehend. Here is how it is defined on Wikipedia:

Let C be a category with some objects X1 and X2. A product of X1 and X2 is an object X (often denoted X1 × X2) together with a pair of morphisms π1 : X → X1, π2 : X → X2 that satisfy the following universal property: for every object Y and pair of morphisms f1 : Y → X1, f2 : Y → X2 there exists a unique morphism f : Y → X1 × X2 such that the following diagram commutes:

Why is it defined that way and how do we interpret it? Let me translate it into something that Java programmers can understand. The definition actually says, if X1 x X2 is a product type of X1 and X2 with two functions π1 : X -> X1 and π2 : X -> X2, there must be a unique function f : Y -> X1 × X2 which satisfies the property: for any value y of type Y, function f1 : Y -> X1 and a function f2 : Y -> X2, the equations π1(f(y)) == f1(y) and π2(f(y)) == f2(y) must always be true.

In other words, if I define my product type as usual like:

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
} public X1 getX1() {
return x1;
} public X2 getX2() {
return x2;
}
}

There must be a unique f which is constructed by:

// Java
Function<Y, Pair<X1, X2>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y), f2.apply(y));
}

In other words, product type guarantees that if you have a function of type Y -> X1 and a function of type Y -> X2, you must have a unique function of type Y -> X1 x X2 satisfying the property. The property can be expressed programatically as: for any y, f1 and f2, the following test must pass.

// Java
void testProductType(Y y, Function<Y, X1> f1, Function<Y, X2> f2) {
Function<Y, Pair<X1, X2>> f = makeF(f1, f2);
assert(f.apply(y).getX1() == f1.apply(y));
assert(f.apply(y).getX2() == f2.apply(y));
}

So what could be a counterexample? Here is:

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
} public X1 getX1() {
return 1;
} public X2 getX2() {
return 2;
}
}

With this wrong definition of product type, you cannot possibly construct such a f which satisfies the universal property, i.e., there are always some cases which can make the test fail.

If you think it is done, here comes the tricky part, is the type below a product type?

// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2; public Pair(T x1, U x2) {
this.x1 = x1;
this.x2 = x2;
} public T getX1() {
return x1 + 1;
} public T getX2() {
return x2 + 2;
}
}

Intuition may tell you it is not a product type, but by definition of product type in the category theory, it actually is. Why? Because you can define a unique f satisfying the property:

// Java
Function<Y, Pair<X, Y>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y) - 1, f2.apply(y) - 2);
}

What this means is that, the two product types are equivalent in category theory. This is because category theory defines equivalence by structure, if two things have the same structure, they are considered the same thing.

Then, what about sum type (a.k.a coproduct type)? The definition in category theory is:

Let C be a category and let X1 and X2 be objects in that category. An object is called the coproduct of these two objects, written X1 ∐ X2 or X1 ⊕ X2 or sometimes simply X1 + X2, if there exist morphisms i1 : X1 → X1 ∐ X2 and i2 : X2 → X1 ∐ X2 satisfying a universal property: for any object Y and morphisms f1 : X1 → Y and f2 : X2 → Y, there exists a unique morphism f : X1 ∐ X2 → Y such that f1 = f ∘ i1 and f2 = f ∘ i2. That is, the following diagram commutes:

From program perspective, the definition says, if X1 ∐ X2 is a sum type of X1 and X2 with two functions i1 : X1 -> X1 ∐ X2 and i2 : X2 → X1 ∐ X2, there must be a unique function f : X1 ∐ X2 -> Y which satisfies the property: for any value y : Y, function f1 : X1 -> Y and function f2 : X2 -> Y, the equations f(i1(y)) == f1(y) and f(i2(y)) == f2(y) must always be true.

If I define sum type as below:

// Java
class Either<X1, X2> {
private final Optional<X1> x1;
private final Optional<X2> x2; private Either(Optional<X1> x1, Optional<X2> x2) {
this.x1 = x1;
this.x2 = x2;
} public static Either<X1, X2> left(X1 x1) {
return new Either(Optional.of(x1), Optional.absent());
} public static Either<X1, X2> right(X2 x2) {
return new Either(Optional.absent(), Optional.of(x2));
} public Optional<T> getX1() {
return x1;
} public Optional<U> getX2() {
return x2;
}
}

There must be a unique f which is constructed by:

// Java
Function<Either<X1, X2>, Y> makeF(Function<X1, Y> f1, Function<X2, Y> f2) {
return (Either<X1, X2> e) -> e.getX1().isPresent() ? f1.apply(e.getX1().get()) : f2.apply(e.getX2().get());
}

In other words, sum type guarantees that if you have a function of type X1 -> Y and a function of type X2 -> Y, you must have a unique function of type X1 ∐ X2 -> Y satisfying the property. The property can be verified programatically as: for any x1, x2, f1, f2 the following tests must pass.

// Java
void testSumType(X1 x1, X2 x2, Function<X1, Y> f1, Function<X2, Y> f2) {
assert(f.apply(Either.left(x1)) == f1.apply(x1));
assert(f.apply(Either.left(x2)) == f2.apply(x2));
}

To sum up, category theory defines product and sum type by requiring them to be able to construct such a function which satisfies a universal property.

Product and Sum in Category Theory的更多相关文章

  1. Category Theory: 01 One Structured Family of Structures

    Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...

  2. 【leetcode】1281. Subtract the Product and Sum of Digits of an Integer

    题目如下: Given an integer number n, return the difference between the product of its digits and the sum ...

  3. [Leetcode] 5279. Subtract the Product and Sum of Digits of an Integer

    class Solution { public int subtractProductAndSum(int n) { int productResult = 1; int sumResult = 0; ...

  4. Spring学习笔记2——创建Product对象,并在其中注入一个Category对象

    第一步:创建Product类.在Product类中有对Category对象的set和get方法 package com.spring.cate; public class Product { priv ...

  5. Web API开发实例——对产品Product进行增删改查

    1.WebApi是什么 ASP.NET Web API 是一种框架,用于轻松构建可以由多种客户端(包括浏览器和移动设备)访问的 HTTP 服务.ASP.NET Web API 是一种用于在 .NET ...

  6. Haskell语言学习笔记(39)Category

    Category class Category cat where id :: cat a a (.) :: cat b c -> cat a b -> cat a c instance ...

  7. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  8. 对话机器学习大神Yoshua Bengio(下)

    对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun ...

  9. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

随机推荐

  1. Java并发编程之同步

    1.synchronized 关键字 synchronized 锁什么?锁对象. 可能锁对象包括: this, 临界资源对象,Class 类对象. 1.1 同步方法 synchronized T me ...

  2. vue iview render里面写时间截取

    render: (h, params) => {params.row.execDate = (params.row.execDate ? params.row.execDate.substr(0 ...

  3. 小程序canvas绘制渐变色(简单入门)

    呀,曾经的我是那么的单纯,天真,粗略的翻了一遍小程序画布API,没有看见渐变色,就以为不支持渐变色 于是在项目中直接把原本的渐变色换成了单一颜色展示,发现很low啊 但是,自从上次小程序API文档更新 ...

  4. 使用CSV控件方法实现参数化

    一.录制脚本 二.下面介绍如何使用CSV控件方法实现参数化 1.  添加-->配置元件-->csv Data Set Config Filename:文件的来源 Variable Name ...

  5. HTML-CSS背景渐进色

    一.分类 a>线性渐变:颜色沿着一条直线过度:从 左到右.从上到下等: b>径向渐变:圆形或椭圆形渐变,颜色不再沿着一条直线变化,而是从一个起点朝所有方向混合. 1.线性渐变语法: bac ...

  6. mac电脑使用技巧和相关快捷键

    移动与选取 1. 光标移动 刚从 Windows 转过来的时候可能会发现,Mac 上没有 Home 和 End 键.其实,直接这样就好了: Cmd + ←  移至行首 (Home)Cmd + →  移 ...

  7. Isight 命令行运行任务

    说明书参考:https://abaqus-docs.mit.edu/2017/English/DSSIMULIA_Established.htm 不一定对版本.但是大部分还可以. 不对的可以在命令里敲 ...

  8. 【转载】http proxy原理

    最近使用Charles抓https包时,发现get和post方式的请求都能抓到,但是method为connect的就是抓不到.而且提示如下: You may need to configure you ...

  9. HTTP之响应消息Response

    一般情况下,服务器接收并处理客户端发过来的请求后会返回一个HTTP的响应消息. HTTP响应也由四个部分组成,分别是:状态行.消息报头.空行和响应正文. 例子 HTTP/1.1 200 OK Date ...

  10. AX_Query

    static void example(Args _args)  {      SysQueryRun     queryRun = new SysQueryRun(querystr(KTL_Sale ...