Product and Sum in Category Theory
Even if you are not a functional programmer, the notion of product type should be familiar to you, e.g., Pair<A, B>
in Java is a product type of A
and B
. But the definition in category theory is not that easy to comprehend. Here is how it is defined on Wikipedia:
Let
C
be a category with some objectsX1
andX2
. A product ofX1
andX2
is an objectX
(often denotedX1 × X2
) together with a pair of morphismsπ1 : X → X1
,π2 : X → X2
that satisfy the following universal property: for every objectY
and pair of morphismsf1 : Y → X1
,f2 : Y → X2
there exists a unique morphismf
:Y → X1 × X2
such that the following diagram commutes:
Why is it defined that way and how do we interpret it? Let me translate it into something that Java programmers can understand. The definition actually says, if X1 x X2
is a product type of X1
and X2
with two functions π1 : X -> X1
and π2 : X -> X2
, there must be a unique function f : Y -> X1 × X2
which satisfies the property: for any value y
of type Y
, function f1 : Y -> X1
and a function f2 : Y -> X2
, the equations π1(f(y)) == f1(y)
and π2(f(y)) == f2(y)
must always be true.
In other words, if I define my product type as usual like:
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
}
public X1 getX1() {
return x1;
}
public X2 getX2() {
return x2;
}
}
There must be a unique f
which is constructed by:
// Java
Function<Y, Pair<X1, X2>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y), f2.apply(y));
}
In other words, product type guarantees that if you have a function of type Y -> X1
and a function of type Y -> X2
, you must have a unique function of type Y -> X1 x X2
satisfying the property. The property can be expressed programatically as: for any y
, f1
and f2
, the following test must pass.
// Java
void testProductType(Y y, Function<Y, X1> f1, Function<Y, X2> f2) {
Function<Y, Pair<X1, X2>> f = makeF(f1, f2);
assert(f.apply(y).getX1() == f1.apply(y));
assert(f.apply(y).getX2() == f2.apply(y));
}
So what could be a counterexample? Here is:
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(X1 x1, X2 x2) {
this.x1 = x1;
this.x2 = x2;
}
public X1 getX1() {
return 1;
}
public X2 getX2() {
return 2;
}
}
With this wrong definition of product type, you cannot possibly construct such a f
which satisfies the universal property, i.e., there are always some cases which can make the test fail.
If you think it is done, here comes the tricky part, is the type below a product type?
// Java
class Pair<X1, X2> {
private final X1 x1;
private final X2 x2;
public Pair(T x1, U x2) {
this.x1 = x1;
this.x2 = x2;
}
public T getX1() {
return x1 + 1;
}
public T getX2() {
return x2 + 2;
}
}
Intuition may tell you it is not a product type, but by definition of product type in the category theory, it actually is. Why? Because you can define a unique f
satisfying the property:
// Java
Function<Y, Pair<X, Y>> makeF(Function<Y, X1> f1, Function<Y, X2> f2) {
return (Y y) -> new Pair(f1.apply(y) - 1, f2.apply(y) - 2);
}
What this means is that, the two product types are equivalent in category theory. This is because category theory defines equivalence by structure, if two things have the same structure, they are considered the same thing.
Then, what about sum type (a.k.a coproduct type)? The definition in category theory is:
Let
C
be a category and letX1
andX2
be objects in that category. An object is called the coproduct of these two objects, writtenX1 ∐ X2
orX1 ⊕ X2
or sometimes simplyX1 + X2
, if there exist morphismsi1 : X1 → X1 ∐ X2
andi2 : X2 → X1 ∐ X2
satisfying a universal property: for any objectY
and morphismsf1 : X1 → Y
andf2 : X2 → Y
, there exists a unique morphismf : X1 ∐ X2 → Y
such thatf1 = f ∘ i1
andf2 = f ∘ i2
. That is, the following diagram commutes:
From program perspective, the definition says, if X1 ∐ X2
is a sum type of X1
and X2
with two functions i1 : X1 -> X1 ∐ X2
and i2 : X2 → X1 ∐ X2
, there must be a unique function f : X1 ∐ X2 -> Y
which satisfies the property: for any value y : Y
, function f1 : X1 -> Y
and function f2 : X2 -> Y
, the equations f(i1(y)) == f1(y)
and f(i2(y)) == f2(y)
must always be true.
If I define sum type as below:
// Java
class Either<X1, X2> {
private final Optional<X1> x1;
private final Optional<X2> x2;
private Either(Optional<X1> x1, Optional<X2> x2) {
this.x1 = x1;
this.x2 = x2;
}
public static Either<X1, X2> left(X1 x1) {
return new Either(Optional.of(x1), Optional.absent());
}
public static Either<X1, X2> right(X2 x2) {
return new Either(Optional.absent(), Optional.of(x2));
}
public Optional<T> getX1() {
return x1;
}
public Optional<U> getX2() {
return x2;
}
}
There must be a unique f
which is constructed by:
// Java
Function<Either<X1, X2>, Y> makeF(Function<X1, Y> f1, Function<X2, Y> f2) {
return (Either<X1, X2> e) -> e.getX1().isPresent() ? f1.apply(e.getX1().get()) : f2.apply(e.getX2().get());
}
In other words, sum type guarantees that if you have a function of type X1 -> Y
and a function of type X2 -> Y
, you must have a unique function of type X1 ∐ X2 -> Y
satisfying the property. The property can be verified programatically as: for any x1
, x2
, f1
, f2
the following tests must pass.
// Java
void testSumType(X1 x1, X2 x2, Function<X1, Y> f1, Function<X2, Y> f2) {
assert(f.apply(Either.left(x1)) == f1.apply(x1));
assert(f.apply(Either.left(x2)) == f2.apply(x2));
}
To sum up, category theory defines product and sum type by requiring them to be able to construct such a function which satisfies a universal property.
Product and Sum in Category Theory的更多相关文章
- Category Theory: 01 One Structured Family of Structures
Category Theory: 01 One Structured Family of Structures 这次看来要放弃了.看了大概三分之一.似乎不能够让注意力集中了.先更新吧. 群的定义 \( ...
- 【leetcode】1281. Subtract the Product and Sum of Digits of an Integer
题目如下: Given an integer number n, return the difference between the product of its digits and the sum ...
- [Leetcode] 5279. Subtract the Product and Sum of Digits of an Integer
class Solution { public int subtractProductAndSum(int n) { int productResult = 1; int sumResult = 0; ...
- Spring学习笔记2——创建Product对象,并在其中注入一个Category对象
第一步:创建Product类.在Product类中有对Category对象的set和get方法 package com.spring.cate; public class Product { priv ...
- Web API开发实例——对产品Product进行增删改查
1.WebApi是什么 ASP.NET Web API 是一种框架,用于轻松构建可以由多种客户端(包括浏览器和移动设备)访问的 HTTP 服务.ASP.NET Web API 是一种用于在 .NET ...
- Haskell语言学习笔记(39)Category
Category class Category cat where id :: cat a a (.) :: cat b c -> cat a b -> cat a c instance ...
- <<Differential Geometry of Curves and Surfaces>>笔记
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
- 对话机器学习大神Yoshua Bengio(下)
对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun ...
- <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
随机推荐
- 学习日记--用Vector(向量)实现动态数组
Vector的使用方法: 能在添加元素时增加长度的数组称为动态数组或可变长数组.相对地,必须事先指定长度,只能容纳一定数量元素的数组称为静态数组.下面分享一下如何借助STL(标准模板库)中的Vecto ...
- Synchronized的几种用法
https://blog.csdn.net/luoweifu/article/details/46613015
- ListBox设置背景色无效的问题。 listview类似
<Style TargetType="{x:Type ListBoxItem}"> <Setter Property="Template"&g ...
- 18-matlab知识点复习一
clc; clear; %% 输出 clc, clear; fprintf('%.19f', pi); fprintf('%d', 110); inf pi disp([1,3,5]) disp('a ...
- double team
队长博客链接 https://www.cnblogs.com/98-10-22-25/p/9806296.html 团队队名 泡面 团队成员 211606361 何承华(队长) 211606356 陈 ...
- node.js 调试 eggs launch.json配置信息
{ // 使用 IntelliSense 了解相关属性. // 悬停以查看现有属性的描述. // 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linki ...
- 人脸检测(1)——HOG特征
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单, ...
- HTTP之状态码
状态代码有三位数字组成,第一个数字定义了响应的类别,共分五种类别: 1xx:指示信息--表示请求已接收,继续处理 2xx:成功--表示请求已被成功接收.理解.接受 3xx:重定向--要完成请求必须进行 ...
- OO学期总结
一.测试与正确性论证差异对比 测试,顾名思义,就是用一些有意义或无意义的输入去检测程序的正确性或鲁棒性,因其直观明了所以在写简单的程序时我们能迅速找出bug并加以解决.并且,这种方式是绝对客观的,只要 ...
- Python学习笔记:基础
本文根据廖雪峰的博客,学习整理笔记.主要内容有:基本数据类型,容器数据类型,变量及其作用域,判断及循环语法,函数式编程,面向对象,模块等概念. 数据类型 在python中,能够直接处理的数据类型有以下 ...