一、循环神经网络RNN

RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239

RNN中为什么要采用tanh而不是ReLu作为激活函数?  https://blog.csdn.net/behboyhiex/article/details/80819530

LSTM该不该使用RELU? https://blog.csdn.net/xygl2009/article/details/78855795

从RNN的结构特征可以容易看出它最擅长解决与时间序列相关的问题。

循环神经网络每一个时刻都有一个输入xi,然后根据上一时刻的状态h(i-1)和当前的输入xi计算当前的状态hi,并输出ot。
RNN的展开在模型训练有重要意义,从下图可以看到,RNN对长度为N的训练展开后,可以视为一个有N个中间层的前馈神经网络,这个前馈神经网络没有循环链接,因此可以直接使用反向传播算法训练,而不需要任何特别的优化算法。这样的训练方法称为"沿时间反向传播"(Back-Propagation Through Time),是训练RNN最常见的方法。

RNN展开图:

或者更清晰如图:

参考 https://www.zhihu.com/question/41949741

图 4:使用单层全连接神经网络作为循环体的 RNN 结构图,图中黄色的 tanh 小方框表示一个使用 tanh 作为激活函数的全连接层。

https://juejin.im/entry/5b97e36cf265da0aa81be239

图3为RNN 的前向传播计算过程:

二、LSTM

LSTM综述 https://www.jianshu.com/p/9dc9f41f0b29

LSTM单元示意图:

各个门的定义示意:

LSTM单元细节:

三、随时间反向传播算法BPTT

https://www.cnblogs.com/wacc/p/5341670.html

三、循环神经网络激活函数

https://blog.csdn.net/xygl2009/article/details/78855795

https://blog.csdn.net/behboyhiex/article/details/80819530

循环神经网络RNN及LSTM的更多相关文章

  1. 通过keras例子理解LSTM 循环神经网络(RNN)

    博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经 ...

  2. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  3. 循环神经网络RNN模型和长短时记忆系统LSTM

    传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常 ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  5. 循环神经网络(RNN, Recurrent Neural Networks)介绍

    原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Netw ...

  6. 从网络架构方面简析循环神经网络RNN

    一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中 ...

  7. 用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

    Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 ...

  8. 循环神经网络(RNN)的改进——长短期记忆LSTM

     一:vanilla RNN 使用机器学习技术处理输入为基于时间的序列或者可以转化为基于时间的序列的问题时,我们可以对每个时间步采用递归公式,如下,We can process a sequence ...

  9. 循环神经网络(RNN)模型与前向反向传播算法

    在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...

随机推荐

  1. 初学Python——文件操作第三篇

    一.引言 什么?有了第二篇文件操作还不够?远远不够!而且在读完第三篇文件操作还是不够.关于文件的操作,后续的学习中将不断学习新的操作方式,使用更加合适的方法. 进入正题,上一篇讲到,Python对文件 ...

  2. Mybatis学习总结(六)——高级映射(一对一,一对多,多对多)

    一.订单商品数据模型 1.数据库执行脚本 创建数据库表代码: /*Table structure for table `t_user` */ CREATE TABLE t_user ( id INT ...

  3. Java IO(四)——字符流

    一.字符流 字节流提供了处理任何类型输入/输出操作的功能(因为对于计算机而言,一切都是0和1,只需把数据以字节形式表示就够了),但它们不可以直接操作Unicode字符,因为一个Unicode字符占用2 ...

  4. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  5. Spring Cloud 分布式链路跟踪 Sleuth + Zipkin + Elasticsearch【Finchley 版】

    随着业务越来越复杂,系统也随之进行各种拆分,特别是随着微服务架构的兴起,看似一个简单的应用,后台可能很多服务在支撑:一个请求可能需要多个服务的调用:当请求迟缓或不可用时,无法得知是哪个微服务引起的,这 ...

  6. Redis中单机数据库的实现

    1. 内存操作层 zmalloc 系接口 redis为了优化内存操作, 封装了一层内存操作接口. 默认情况下, 其底层实现就是最简朴的libc中的malloc系列接口. 如果有定制化需求, 可以通过配 ...

  7. 二十二:制作app的时候超出部分不能滑动

    给需要滑动的区域写以下样式(父级是浏览器) position: absolute; left: 0; right: 0; bottom: 0; top: 0; overflow-x: hidden; ...

  8. 便于记忆的SA构造

    首先学习基数排序. memset(b, 0, sizeof(b)); for(int i = 0; i < n; i++) b[a[i]]++; for(int i = 1; i <= m ...

  9. C. Edgy Trees

    链接 [https://codeforces.com/contest/1139/problem/C] 题意 给你n个点,n-1个边,无向的.有red和black的. k表示经过这k个点.可以跨其他点 ...

  10. java web 常见异常及解决办法

    javax.servlet.ServletException: javax/servlet/jsp/SkipPageException 重启tomcat, javax.servlet.ServletE ...