吴裕雄 python 机器学习——回归决策树模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n):
np.random.seed(0)
X = 5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
noise_num=(int)(n/5)
# 每第5个样本,就在该样本的值上添加噪音
y[::5] += 3 * (0.5 - np.random.rand(noise_num))
return train_test_split(X, y,test_size=0.25,random_state=1) #决策树DecisionTreeRegressor模型
def test_DecisionTreeRegressor(*data):
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test)))
#绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=creat_data(100)
# 调用 test_DecisionTreeRegressor
test_DecisionTreeRegressor(X_train,X_test,y_train,y_test)
def test_DecisionTreeRegressor_splitter(*data):
'''
测试 DecisionTreeRegressor 预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter %s"%splitter)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test))) # 调用 test_DecisionTreeRegressor_splitter
test_DecisionTreeRegressor_splitter(X_train,X_test,y_train,y_test)
def test_DecisionTreeRegressor_depth(*data,maxdepth):
'''
测试 DecisionTreeRegressor 预测性能随 max_depth 的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
regr = DecisionTreeRegressor(max_depth=depth)
regr.fit(X_train, y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
# 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score")
ax.plot(depths,testing_scores,label="testing score")
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 调用 test_DecisionTreeRegressor_depth
test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=20)
吴裕雄 python 机器学习——回归决策树模型的更多相关文章
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——核化PCAKernelPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型
import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...
- 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- 吴裕雄 python 机器学习——线性回归模型
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
随机推荐
- shell脚本,如果文件中的第一列有相同的,就把相同的那些行的其他字段相加
命令:awk '{a[$1]+=$2}{b[$1]+=$3}END{for(i in a){print i,a[i],b[i]}}'
- Python脚本之Lrc歌词去时间轴转Txt文件,附带酷狗音乐APP关联已有krc歌词
一.Lrc歌词去时间轴转Txt文件 环境:Python2.7.x, Mac(Windows需装cygwin环境,当然你也可以自己改代码,Python新手,勿喷) # -*- coding: UTF-8 ...
- C# .NET MD5 HASH
using System; using System.Security.Cryptography; using System.Text; namespace AAA { /// <summary ...
- java获取客户端ip地址工具类
public class IpUtils { private static final String[] HEADERS = { "X-Forwarded-For", " ...
- 转载----五种开源协议(GPL,LGPL,BSD,MIT,Apache)
原文地址:https://www.oschina.net/question/54100_9455 五种开源协议(GPL,LGPL,BSD,MIT,Apache) 什么是许可协议? 什么是许可,当你为你 ...
- 辨析字节序(Endianness)
字节序(Endianness, Byte Order)指的是对于一个多字节数值,当在内存中存储该值或者在链路中传输该值时,其值所包含的多个字节的排列顺序. 在计算机科学中,一般存在两种字节序,大端字节 ...
- mvc中让路由忽略带后缀的路径文件
public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/ ...
- 编译问题:'<invalid-global-code>' does not contain a definition for 'Store' and no extension method 'XXX' accepting a first argument of type '<invalid-global-code>' could be found
这是VS2015上的bug. 我碰到的时候,是VS在合并两个分支的代码时,多加了一个}.导致编译语法报错.. 解决办法就是在错误的附近,找找有没有多余的大括号,删掉即可. 这个问题在vs2017上面没 ...
- RIDE创建工程和测试套件和用例--书本介绍的入门方法,自己整理实践下
1.选择File->New Project 2.弹出的New Project对话框,在Name文本框输入一个名词,如“TestProject-0805”,右侧选中“Directory”,选中建立 ...
- Robot Framework安装及入门
1. 安装 所有安装文件存放在:\Robotsoft64位文件夹下 1) 安装python2.7.14 a) 双击执行python-2.7.14.msi b) 安装后更改环境变量,添加python的安 ...