import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor def creat_data(n):
np.random.seed(0)
X = 5 * np.random.rand(n, 1)
y = np.sin(X).ravel()
noise_num=(int)(n/5)
# 每第5个样本,就在该样本的值上添加噪音
y[::5] += 3 * (0.5 - np.random.rand(noise_num))
return train_test_split(X, y,test_size=0.25,random_state=1) #决策树DecisionTreeRegressor模型
def test_DecisionTreeRegressor(*data):
X_train,X_test,y_train,y_test=data
regr = DecisionTreeRegressor()
regr.fit(X_train, y_train)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test)))
#绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
X = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
Y = regr.predict(X)
ax.scatter(X_train, y_train, label="train sample",c='g')
ax.scatter(X_test, y_test, label="test sample",c='r')
ax.plot(X, Y, label="predict_value", linewidth=2,alpha=0.5)
ax.set_xlabel("data")
ax.set_ylabel("target")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=creat_data(100)
# 调用 test_DecisionTreeRegressor
test_DecisionTreeRegressor(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_splitter(*data):
'''
测试 DecisionTreeRegressor 预测性能随划分类型的影响
'''
X_train,X_test,y_train,y_test=data
splitters=['best','random']
for splitter in splitters:
regr = DecisionTreeRegressor(splitter=splitter)
regr.fit(X_train, y_train)
print("Splitter %s"%splitter)
print("Training score:%f"%(regr.score(X_train,y_train)))
print("Testing score:%f"%(regr.score(X_test,y_test))) # 调用 test_DecisionTreeRegressor_splitter
test_DecisionTreeRegressor_splitter(X_train,X_test,y_train,y_test)

def test_DecisionTreeRegressor_depth(*data,maxdepth):
'''
测试 DecisionTreeRegressor 预测性能随 max_depth 的影响
'''
X_train,X_test,y_train,y_test=data
depths=np.arange(1,maxdepth)
training_scores=[]
testing_scores=[]
for depth in depths:
regr = DecisionTreeRegressor(max_depth=depth)
regr.fit(X_train, y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
# 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(depths,training_scores,label="traing score")
ax.plot(depths,testing_scores,label="testing score")
ax.set_xlabel("maxdepth")
ax.set_ylabel("score")
ax.set_title("Decision Tree Regression")
ax.legend(framealpha=0.5)
plt.show() # 调用 test_DecisionTreeRegressor_depth
test_DecisionTreeRegressor_depth(X_train,X_test,y_train,y_test,maxdepth=20)

吴裕雄 python 机器学习——回归决策树模型的更多相关文章

  1. 吴裕雄 python 机器学习——分类决策树模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...

  2. 吴裕雄 python 机器学习——核化PCAKernelPCA模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  3. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  4. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  8. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

  9. 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. shell脚本,如果文件中的第一列有相同的,就把相同的那些行的其他字段相加

    命令:awk '{a[$1]+=$2}{b[$1]+=$3}END{for(i in a){print i,a[i],b[i]}}'

  2. Python脚本之Lrc歌词去时间轴转Txt文件,附带酷狗音乐APP关联已有krc歌词

    一.Lrc歌词去时间轴转Txt文件 环境:Python2.7.x, Mac(Windows需装cygwin环境,当然你也可以自己改代码,Python新手,勿喷) # -*- coding: UTF-8 ...

  3. C# .NET MD5 HASH

    using System; using System.Security.Cryptography; using System.Text; namespace AAA { /// <summary ...

  4. java获取客户端ip地址工具类

    public class IpUtils { private static final String[] HEADERS = { "X-Forwarded-For", " ...

  5. 转载----五种开源协议(GPL,LGPL,BSD,MIT,Apache)

    原文地址:https://www.oschina.net/question/54100_9455 五种开源协议(GPL,LGPL,BSD,MIT,Apache) 什么是许可协议? 什么是许可,当你为你 ...

  6. 辨析字节序(Endianness)

    字节序(Endianness, Byte Order)指的是对于一个多字节数值,当在内存中存储该值或者在链路中传输该值时,其值所包含的多个字节的排列顺序. 在计算机科学中,一般存在两种字节序,大端字节 ...

  7. mvc中让路由忽略带后缀的路径文件

    public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/ ...

  8. 编译问题:'<invalid-global-code>' does not contain a definition for 'Store' and no extension method 'XXX' accepting a first argument of type '<invalid-global-code>' could be found

    这是VS2015上的bug. 我碰到的时候,是VS在合并两个分支的代码时,多加了一个}.导致编译语法报错.. 解决办法就是在错误的附近,找找有没有多余的大括号,删掉即可. 这个问题在vs2017上面没 ...

  9. RIDE创建工程和测试套件和用例--书本介绍的入门方法,自己整理实践下

    1.选择File->New Project 2.弹出的New Project对话框,在Name文本框输入一个名词,如“TestProject-0805”,右侧选中“Directory”,选中建立 ...

  10. Robot Framework安装及入门

    1. 安装 所有安装文件存放在:\Robotsoft64位文件夹下 1) 安装python2.7.14 a) 双击执行python-2.7.14.msi b) 安装后更改环境变量,添加python的安 ...