背景

MapReduce是个非常灵活和强大的数据聚合工具。它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理。

MongoDB也提供了MapReduce,当然查询语肯定是JavaScript。MongoDB中的MapReduce主要有以下几阶段:

1. Map:把一个操作Map到集合中的每一个文档

2. Shuffle: 根据Key分组对文档,并且为每个不同的Key生成一系列(>=1个)的值表(List of values)。

3. Reduce: 处理值表中的元素,直到值表中只有一个元素。然后将值表返回到Shuffle过程,循环处理,直到每个Key只对应一个值表,并且此值表中只有一个元素,这就是MR的结果。

4. Finalize:此步骤不是必须的。在得到MR最终结果后,再进行一些数据“修剪”性质的处理。

MongoDB中使用emit函数向MapReduce提供Key/Value对。

Reduce函数接受两个参数:Key,emits. Key即为emit函数中的Key。 emits是一个数组,它的元素就是emit函数提供的Value。

Reduce函数的返回结果必须要能被Map或者Reduce重复使用,所以返回结果必须与emits中元素结构一致。

Map或者Reduce函数中的this关键字,代表当前被Mapping文档。

实例

测试数据: 这个集合是三个用户购买的产品和产品价格的数据。

CodeCodefor(var i=0;i<1000;i++){
var rID=Math.floor(Math.random()*10);
var priceparseFloat((Math.random()*10).toFixed(2));
if(rID<4){
db.test.insert({"user":"Joe","sku":rID,"price":price});
}
else if(rID>=4 && rID<7)
{
db.test.insert({"user":"Josh","sku":rID,"price":price});
}
else {
db.test.insert({"user":"Ken","sku":rID,"price":price});
}
}

1. 每个用户各购买了多少个产品?()

Code//SQL实现
select user,count(sku) from test
group by user //MapReduce实现
map=function (){
emit(this.user,{count:1})
} reduce=function (key,values){
var cnt=0;
values.forEach(function(val){ cnt+=val.count;});
return {"count":cnt};
}
//MR结果存到集合mr1
db.test.mapReduce(map,reduce,{out:"mr1"})
//查看MR之后结果
> db.mr1.find()
{ "_id" : "Joe", "value" : { "count" : 416 } }
{ "_id" : "Josh", "value" : { "count" : 287 } }
{ "_id" : "Ken", "value" : { "count" : 297 } }

2. 每个用户不同的产品购买了多少个?(复合Key做MR)

Code//SQL实现
select user,sku,count(*) from test
group by user,sku //MapReduce实现
map=function (){
emit({user:this.user,sku:this.sku},{count:1})
} reduce=function (key,values){
var cnt=0;
values.forEach(function(val){ cnt+=val.count;});
return {"count":cnt};
} db.test.mapReduce(map,reduce,{out:"mr2"})
> db.mr2.find()
{ "_id" : { "user" : "Joe", "sku" : 0 }, "value" : { "count" : 103 } }
{ "_id" : { "user" : "Joe", "sku" : 1 }, "value" : { "count" : 106 } }
{ "_id" : { "user" : "Joe", "sku" : 2 }, "value" : { "count" : 102 } }
{ "_id" : { "user" : "Joe", "sku" : 3 }, "value" : { "count" : 105 } }
{ "_id" : { "user" : "Josh", "sku" : 4 }, "value" : { "count" : 87 } }
{ "_id" : { "user" : "Josh", "sku" : 5 }, "value" : { "count" : 107 } }
{ "_id" : { "user" : "Josh", "sku" : 6 }, "value" : { "count" : 93 } }
{ "_id" : { "user" : "Ken", "sku" : 7 }, "value" : { "count" : 98 } }
{ "_id" : { "user" : "Ken", "sku" : 8 }, "value" : { "count" : 83 } }
{ "_id" : { "user" : "Ken", "sku" : 9 }, "value" : { "count" : 116 } }

3. 每个用户购买的产品数量,总金额是多少?(复合Reduce结果处理)

Code//SQL实现
select user,count(sku),sum(price) from test
group by user //MapReduce实现
map=function (){
emit(this.user,{amount:this.price,count:1})
} reduce=function (key,values){
var res={amount:0,count:0}
values.forEach(function(val){
res.amount+=val.amount;
res.count+=val.count
});
return res;
} db.test.mapReduce(map,reduce,{out:"mr3"}) > db.mr3.find()
{ "_id" : "Joe", "value" : { "amount" : 2053.8899999999994, "count" : 395 } }
{ "_id" : "Josh", "value" : { "amount" : 1409.2600000000002, "count" : 292 } }
{ "_id" : "Ken", "value" : { "amount" : 1547.7700000000002, "count" : 313 } }

4. 在3中返回的amount的float精度需要改成两位小数,还需要得到商品的平均价格。(使用Finalize处理reduce结果集)

Code//SQL实现
select user,cast(sum(price) as decimal(10, 2)) as amount,count(sku) as [count],
cast((sum(price)/count(sku)) as decimal(10,2)) as avgPrice
from test
group by user
//MapReduce实现
map=function (){
emit(this.user,{amount:this.price,count:1,avgPrice:0})
} reduce=function (key,values){
var res={amount:0,count:0,avgPrice:0}
values.forEach(function(val){
res.amount+=val.amount;
res.count+=val.count
});
return res;
} finalizeFun=function (key,reduceResult){
reduceResult.amount=(reduceResult.amount).toFixed(2);
reduceResult.avgPrice=(reduceResult.amount/reduceResult.count).toFixed(2);
return reduceResult;} db.test.mapReduce(map,reduce,{out:"mr4",finalize:finalizeFun})
> db.mr4.find()
{ "_id" : "Joe", "value" : { "amount" : "2053.89", "count" : 395, "avgPrice" : "5.20" } }
{ "_id" : "Josh", "value" : { "amount" : "1409.26", "count" : 292, "avgPrice" : "4.83" } }
{ "_id" : "Ken", "value" : { "amount" : "1547.77", "count" : 313, "avgPrice" : "4.94" } }

5. 统计单价大于6的SKU,每个用户的购买数量.(筛选数据子集做MR)

这个比较简单了,只需要将1.中调用MR时加上筛选查询即可,其它不变.

Codedb.test.mapReduce(map,reduce,{query:{price:{"$gt":6}},out:"mr5"})

总结

MongoDB中的MR工具非常强大,文中的例子只是基础实例.结合Sharding后,多服务器并行做数据集合处理,才能真正显现其能力.

如果后续有时间,希望能总结和分享更多关于MongoDB,关于SQL Server的东西.

MongoDB:MapReduce基础及实例的更多相关文章

  1. 一点MongoDB的基础及mongodb在mac上的安装

    最近发现维持写博客的习惯还是挺困难的,尤其对我来说,计划好的事过了好长时间才想到要去做. 这段时间一直在熟悉MongoDB,首先我是参考的这一篇:8天学通MongoDB   原博主写得非常好,我这里就 ...

  2. Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)

    前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...

  3. MapReduce(一) mapreduce基础入门

    一.mapreduce入门 1.什么是mapreduce 首先让我们来重温一下 hadoop 的四大组件:HDFS:分布式存储系统MapReduce:分布式计算系统YARN: hadoop 的资源调度 ...

  4. 【MapReduce】一、MapReduce简介与实例

    (一)MapReduce介绍 1.MapReduce简介   MapReduce是Hadoop生态系统的一个重要组成部分,与分布式文件系统HDFS.分布式数据库HBase一起合称为传统Hadoop的三 ...

  5. 7,MapReduce基础

    目录 MapReduce基础 一.关于MapReduce 二.MapReduce的优缺点 三.MapReduce的执行流程 四.编写MapReduce程序 五.MapReduce的主要执行流程 Map ...

  6. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  7. MongoDB MapReduce(转)

    MapReduce MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机 ...

  8. AutoCAD ObjectARX(VC)开发基础与实例教程2014版光盘镜像

    AutoCAD ObjectARX(VC)开发基础与实例教程2014,最新版,光盘镜像 作者:张帆 朱文俊 编著 出版社:中国电力出版社 出版时间:2014年6月 点击一下

  9. 基础 jQuery 实例

    基础 jQuery 实例 jQuery 原则: 由于 jQuery 是为处理 HTML 事件而特别设计的,那么当您遵循以下原则时,您的代码会更恰当且更易维护: 把所有 jQuery 代码置于事件处理函 ...

随机推荐

  1. java的arrayCopy用法

    java的arrayCopy用法     final , ); //System.arraycopy(samplesConverted, 0, bytes, 0, 1024); 先贴上语法: publ ...

  2. QString类

    1.将QString所有字母大写 QString.toUpper() 2.将QString所有字母小写 QString.toLower() 3.获取字符串的字符数 QString.length() 4 ...

  3. Spring_属性配置细节

    XML 代码: <!-- 使用构造器注入属性值的位置和参数的类型!以区分重载的构造器! --> <bean id="car1" class="com.h ...

  4. Window修改git-bash默认路径

    每次打开git-bash都默认到c盘,解决办法:修改git-bash的快捷方式 1. 删除目录后面的 --cd-to-home 2. 修改起始位置路径为你的项目路径 3. 还可以设置一个快捷键,在任何 ...

  5. Linux下同时复制多个文件

    方法一 使用cp命令 cp /home/usr/dir/{file1,file2,file3,file4} /home/usr/destination/ 需要注意的是这几个文件之间不要有空格 具有共同 ...

  6. hadoop 2.7.3 源码编译教程

    1.工具准备,最靠谱的是hadoop说明文档里要求具备的那些工具. 到hadoop官网,点击source下载hadoop-2.7.3-src.tar.gz. 解压之 tar -zxvf hadoop- ...

  7. TrappingRainWater

    问题描述: Given n non-negative integers representing an elevation map where the width of each bar is 1, ...

  8. Web Service简介

    1.1.Web Service基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求, ...

  9. 爬虫第六篇:scrapy框架爬取某书网整站爬虫爬取

    新建项目 # 新建项目$ scrapy startproject jianshu# 进入到文件夹 $ cd jainshu# 新建spider文件 $ scrapy genspider -t craw ...

  10. java-ConcurrentLinkedQueue 简单使用

    import java.util.concurrent.ConcurrentLinkedQueue; public class CacheTest { /** * * offer(E e) 将指定元素 ...