原题链接在这里:https://leetcode.com/problems/partition-to-k-equal-sum-subsets/description/

题目:

Given an array of integers nums and a positive integer k, find whether it's possible to divide this array into k non-empty subsets whose sums are all equal.

Example 1:

Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums. 

Note:

  • 1 <= k <= len(nums) <= 16.
  • 0 < nums[i] < 10000.

题解:

首先计算sum, 看sum能否被k整除. 若不能, 铁定不能分成k组. return false.

若能的话,每组的target sum就该是sum/k. 一组一组的减掉. 直到 k = 1. 剩下最后一组, 最后一组的sum肯定是sum/k.

因为这里的已经验证过sum是k的倍数, 而前面已经有k-1组 sum/k找到了. 所以可以直接return true.

This is bottom-up recursion. Set parameters for state first.

It needs count to count number in subarray. Since there may be negative number in nums. If target is 0, there could be [-1, 1] or empty subarray.

The reason state has both visited and cur starting index is because of trimming dfs tree.

When summing up to target, if index i can't be used, when trying j > i, the next level of DFS, there is no need to try i again. Because if i works, it would be added into res before.

The only case i could be used is to sum up next target.

Note: the question is asking for non-empty, we need to add a count of each sub set. And make sure it is > 0 before accumlating to result.

Time Complexity: exponential.

Space: O(n). stack space.

AC Java:

 class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
if(nums == null || nums.length == 0){
return false;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum % k != 0){
return false;
} boolean [] visited = new boolean[nums.length];
return dfs(nums, visited, 0, 0, sum/k, 0, k);
} private boolean dfs(int [] nums, boolean [] visited, int cur, int sum, int target, int count, int k){
if(sum > target){
return false;
} if(k == 1){
return true;
} if(sum == target && count > 0){
return dfs(nums, visited, 0, 0, target, 0, k-1);
} for(int i = cur; i<nums.length; i++){
if(!visited[i]){
visited[i] = true;
if(dfs(nums, visited, i+1, sum+nums[i], target, count++, k)){
return true;
} visited[i] = false;
}
} return false;
}
}

类似Partition Equal Subset SumMatchsticks to Square.

LeetCode Partition to K Equal Sum Subsets的更多相关文章

  1. [LeetCode] Partition to K Equal Sum Subsets 分割K个等和的子集

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  2. 【LeetCode】698. Partition to K Equal Sum Subsets 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 日期 题目地址:https://leetco ...

  3. [LeetCode] 698. Partition to K Equal Sum Subsets

    Problem Given an array of integers nums and a positive integer k, find whether it's possible to divi ...

  4. 【leetcode】698. Partition to K Equal Sum Subsets

    题目如下: 解题思路:本题是[leetcode]473. Matchsticks to Square的姊妹篇,唯一的区别是[leetcode]473. Matchsticks to Square指定了 ...

  5. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  6. 698. Partition to K Equal Sum Subsets 数组分成和相同的k组

    [抄题]: Given an array of integers nums and a positive integer k, find whether it's possible to divide ...

  7. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  8. [Swift]LeetCode698. 划分为k个相等的子集 | Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

  9. [LeetCode] Split Array with Equal Sum 分割数组成和相同的子数组

    Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies fol ...

随机推荐

  1. [pixhawk笔记]1-编译过程

    好久没有编译过PIXHAWK了,由于项目需要,又买了一个pixhawk2,由于每次编译都会出现新的问题,这次写帖子将过程记录下来. 环境:WIN10+Ubuntu16.04 64位(VMware Wo ...

  2. Python中用format函数格式化字符串的用法(2.7版本讲解哦!)

    语法 它通过{}和:来代替%.“映射”示例 通过位置 In [1]: '{0},{1}'.format('kzc',18) Out[1]: 'kzc,18' In [2]: '{},{}'.forma ...

  3. sql 加密解密函数

    if object_ID ( 'fn_ACITEncryption' ) is not null      drop function fn_ACITEncryption  go    create  ...

  4. Web性能优化——缓存

    Ehcache: ehcache的配置文件ehcache.xml <?xml version="1.0" encoding="UTF-8"?> &l ...

  5. 未来简史之数据主义(Dataism)

    https://www.jianshu.com/p/8147239c9cb0?from=singlemessage junjguo 关注 2017.04.24 22:08* 字数 8116 阅读 31 ...

  6. Spring -- 如何为applicationContext.xml 添加 util 的 *.xsd文件

  7. Linux Wget 命令

    Linux wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员,经常要下载一些软件或从远程服务器恢复备份到本地服务器.如果我们使用虚拟主机,处理这样的 ...

  8. MapReduce job在JobTracker初始化源码级分析

    mapreduce job提交流程源码级分析(三)中已经说明用户最终调用JobTracker.submitJob方法来向JobTracker提交作业.而这个方法的核心提交方法是JobTracker.a ...

  9. ZC_操作_not敲代码

    1.javah 命令(路径为 项目的bin目录下),例如 : F:\ZC_Code_E\workspace__MyEclipse2013\JNIjw01\bin>javah jniZ.JNIjw ...

  10. Selenium with Python 006 - 操作浏览器

    #!/usr/bin/env python # -*- coding: utf-8 -*- from selenium import webdriver import time driver = we ...