Try the online demo: http://willow-fd.rocq.inria.fr/unshake/

Overview

One common feature of “shaken” images is the presence of saturated pixels. These are caused when the radiance of the scene exceeds the range of the camera’s sensor, leaving bright highlights clipped at the maximum output value (e.g. 255 for an 8-bit image). To anyone who has attempted to take hand-held photographs at night, this effect should be familiar as the conspicuous bright streaks left by electric lights, such as in the images below. These bright pixels, with their clipped values, violate the assumption made by many algorithms that the image formation process is linear, and as a result can cause obtrusive artifacts in the deblurred images. This can be seen in the example images below. In this paper, we propose a non-blind deblurring algorithm that takes account of saturated pixels, and is able to greatly reduce the artifacts they cause in the deblurred results.

We also demonstrate an efficient approximation for spatially-varying blur, extending the work of Hirsch et al. [4] to handle our previously-proposed global model for spatially-varying camera shake blur [5]. This approximation, based on the local uniformity of the blur, allows the forward model for spatially-varying blur to be computed significantly faster than the exact model, while retaining the benefits of the global parameterization. Note that independently of our work, Hirsch et al. [6] have proposed a similar method to combine a global model of spatially-varying blur with their locally-uniform approximation.

Examples

Click to enlarge images. Navigate through with cursor keys.

  • Blurry image with saturation

  • Deblurred with Richardson-Lucy [1,2]

  • Deblurred with algorithm of Krishnan & Fergus [3]

  • Deblurred with proposed method

Efficient Approximation of the Global Blur Model

The images below show a synthetic blur kernel for our previously proposed model [5]. The PSF is visualized at various points across the image, using the exact forward model and the approximation at increasingly fine levels of discretization. The approximation quickly approaches the exact model, and at the finest discretization shown it is almost identical to the exact model.

  • Global blur kernel

  • PSF, exact forward model

  • PSF, approximate forward model,
    3 × 4 patches

  • PSF, approximate forward model,
    6 × 8 patches

  • PSF, approximate forward model,
    12 × 16 patches

Paper

Images

The images from the CPCV 2011 paper: Download (25MB)

The results of our algorithm on the images of Cho et al. [7]: Download (16MB)

Code

A package of Matlab code for non-blind deblurring of blurry images with clipped / saturated pixels.
Version 0.1 (20-Nov-2011): Download (7MB) | Readme

Code

This package contains code to perform fast blind deblurring of images degraded by camera shake, using the MAP algorithm described in our IJCV 2012 paper, and the fast approximation of spatially-varying blur described in our CPCV 2011 paper.

Version 1.0 (21-Sep-2014): Download (18MB) | Readme

Comparison to the Method of Cho et al.

The images below show the results of our non-blind deblurring algorithm on images provided by Cho et al. [7]. The (spatially-invariant) blur kernels for the images, along with the results of their algorithm, are provided by the authors online here.

Download the uncompressed images above, or at this link.

Click to enlarge images. Navigate through with cursor keys.

  • Blurry Image

  • Result from Cho et al. [7]

  • Our result

References

[1] W. H. Richardson. Bayesian-Based Iterative Method of Image Restoration. Journal of the Optical Society of America, 62(1), 1972.

[2] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astronomical Journal, 79(6), 1974.

[3] D. Krishnan and R. Fergus. Fast Image Deconvolution using Hyper-Laplacian Priors. In Proc. NIPS, 2009.

[4] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution. In Proc. CVPR, 2010.

[5] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform Deblurring for Shaken Images. In Proc. CVPR, 2010.

[6] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf. Fast Removal of Non-uniform Camera Shake. In Proc. ICCV, 2011.

[7] S. Cho, J. Wang, and S. Lee. Handling Outliers in Non-blind Image Deconvolution. In Proc. ICCV, 2011.

Last updated: 14th December 2011

Efficient Deblurring for Shaken and Partially Saturated Images的更多相关文章

  1. 论文笔记---Deblurring Shaken and Partially Saturated Images

    抖动和部分饱和图像去模糊 摘要 我们解决了由相机抖动造成的模糊和饱和或过度曝光像素导致的图像去模糊的问题.饱和像素对于现有的非盲去模糊算法是一个问题,因为它们不符合图像形成过程是线性的这一假设,并且经 ...

  2. 图像运动去模糊(Motion Deblurring)代码

    http://blog.csdn.net/qianliheshan/article/details/12853157 http://www.di.ens.fr/~whyte/ Efficient De ...

  3. paper 15 :整理的CV代码合集

    这篇blog,原来是西弗吉利亚大学的Li xin整理的,CV代码相当的全,不知道要经过多长时间的积累才会有这么丰富的资源,在此谢谢LI Xin .我现在分享给大家,希望可以共同进步!还有,我需要说一下 ...

  4. Needle in a haystack: efficient storage of billions of photos 【转】

    转自09年的blog,因为facebook在国内无法访问,故此摘录. The Photos application is one of Facebook’s most popular features ...

  5. One SQL to Rule Them All – an Efficient and Syntactically Idiomatic Approach to Management of Streams and Tables(中英双语)

    文章标题 One SQL to Rule Them All – an Efficient and Syntactically Idiomatic Approach to Management of S ...

  6. 论文阅读(Lukas Neuman——【ICDAR2015】Efficient Scene Text Localization and Recognition with Local Character Refinement)

    Lukas Neuman--[ICDAR2015]Efficient Scene Text Localization and Recognition with Local Character Refi ...

  7. Notes on 'Efficient Graph-Based Image Segmentation'

    Notes on Efficient Graph-Based Image Segmentation 算法的目标 按照一种确定的标准, 将图片分割成细粒度的语义区域, 即Super pixel. 算法步 ...

  8. Web Pages - Efficient Paging Without The WebGrid

    Web Pages - Efficient Paging Without The WebGrid If you want to display your data over a number of p ...

  9. 论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs

    Deep Recurrent Q-Learning for Partially Observable MDPs  摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on b ...

随机推荐

  1. webservice调用天气

    class WebServiceHelper { /// <summary> /// 动态调用WebService /// </summary> /// <param n ...

  2. 看图写树 (Undraw the Trees UVA - 10562)

    题目描述: 原题:https://vjudge.net/problem/UVA-10562 题目思路: 递归找结点 //自己的代码测试过了,一直WA,贴上紫书的代码 AC代码 #include< ...

  3. 【递归入门】组合+判断素数:dfs(递归)

    题目描述 已知 n 个整数b1,b2,…,bn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和. 例如当 n=4,k=3,4 个整数分别为 3,7,12, ...

  4. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  5. SpringBoot在IntelliJ IDEA下for MAC 热加载

    说在前面 热加载:文件内容变更服务器自动运行最新代码.实则在IDEA环境进行热部署后,下述过程一气呵成. 1代码变更,文件自动保存(IDEA自动保存代码,用户无需使用COMMAND+SAVE快捷键): ...

  6. qt qchart缩放后坐标轴间隔取整

    使用qt的qchart显示数据曲线,坐标轴QValueAxis可以设置刻度间隔数量,但每个刻度的数值是根据坐标的极值除以间隔数量得到的,不一定是整数,导致曲线控件的显示刻度不适合观察. 如图: 纵坐标 ...

  7. SGU 176 Flow construction(有源汇上下界最小流)

    Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...

  8. 【转】AMD 的 CommonJS wrapping

    其实本文的标题应该是「为什么我不推荐使用 AMD 的 Simplified CommonJS wrapping」,但太长了不好看,为了美观我只能砍掉一截. 它是什么? 为了复用已有的 CommonJS ...

  9. Python中的__future__

    在Python中,你如果在某一个版本的Python想使用未来版本中的功能,可以使用如下语法实现: from __future__ import futurename 这条语句必须放在module文件的 ...

  10. python学习笔记04:安装pip

    如果是从python官网下载的python版本(2.7.9或3.4)的安装包,其中已经内置了pip工具.那么只需要升级pip即可. 检测是否已安装pip: python -m pip --versio ...