HDU.2503 a/b + c/d (分式化简)
a/b + c/d
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12746 Accepted Submission(s): 6774
Problem Description
给你2个分数,求他们的和,并要求和为最简形式。
Input
输入首先包含一个正整数T(T<=1000),表示有T组测试数据,然后是T行数据,每行包含四个正整数a,b,c,d(0
Output
对于每组测试数据,输出两个整数e和f,表示a/b + c/d的最简化结果是e/f,每组输出占一行。
Sample Input
2
1 2 1 3
4 3 2 3
Sample Output
5 6
2 1
解题思路:
模拟一下分式化简过程就行,先通分,再相加,然后能约分约分。
值得注意的2个地方:
1.gcd函数的写法
2.特殊情况的处理
代码:
/*
Title:HDU.2503
Date:2016-10-24
Author:pengwill
Blog:http://blog.csdn.net/pengwill97/
*/
#include <stdio.h>
#include <stdlib.h>
int find(int a,int b);
int main()
{
int T;
int a, b, c,d,lcm,n;
scanf("%d" ,&T);
while(T--){
scanf("%d%d%d%d",&a,&b,&c,&d);
lcm = b * d / find(b,d);
n = a * lcm / b + c * lcm / d;
int judge = find(lcm,n);
if(judge == 1){
printf("%d %d\n",n,lcm);
}else{
printf("%d %d\n",n / judge, lcm /judge);
}
}
return 0;
}
int find(int a,int b)
{
int t;
if(a<b){
t = a;
a = b;
b = t;
}
while(b && b!= 1){
t = a %b;
a = b;
b = t;
}
if(b == 1){
return b;
}else{
return a;
}
}
HDU.2503 a/b + c/d (分式化简)的更多相关文章
- 【leetcode】LCP 2. 分式化简
题目如下: 有一个同学在学习分式.他需要将一个连分数化成最简分数,你能帮助他吗? 连分数是形如上图的分式.在本题中,所有系数都是大于等于0的整数. 输入的cont代表连分数的系数(cont[0]代表上 ...
- HDU 5912 Fraction(模拟——分子式化简求解)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5912 Problem Description Mr. Frog recently studied h ...
- HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简
http://acm.hdu.edu.cn/showproblem.php?pid=4565 首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数). 因为 ...
- hdu 2503 a/b + c/d
Problem Description 给你2个分数,求他们的和,并要求和为最简形式. Input 输入首先包含一个正整数T(T<=1000),表示有T组测试数据,然后是T行数据,每行包含四 ...
- YZOI Easy Round 2_化简(simplify.c/cpp/pas)
Description 给定一个多项式,输出其化简后的结果. Input 一个字符串,只含有关于字母x 的多项式,不含括号与分式,没有多余的空格. Output 一个字符串,化简后的多项式,按照次数从 ...
- 线性可分SVM中线性规划问题的化简
在网上找了许多关于线性可分SVM化简的过程,但似乎都不是很详细,所以凭借自己的理解去详解了一下. 线性可分SVM的目标是求得一个超平面(其实就是求w和b),在其在对目标样本的划分正确的基础上,使得到该 ...
- NOIP201402比例化简
比例化简 [问题描述]在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果.例如,对某一观点表示支持的有 1498 人,反对的有 902 人,那么赞同与反对的比例可以简单的记为1498:9 ...
- 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)
简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...
- 化简复杂逻辑,编写紧凑的if条件语句
当业务逻辑很复杂,涉及多个条件的真假,或者多种条件下都会执行同一动作时,如何编写紧凑的if语句呢?本文借由一个实际例子,利用数学的布尔逻辑整理条件,最终产生if语句. 问题 在<X3 重聚> ...
随机推荐
- 2019年猪年海报PSD模板-第三部分
14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/15m6sWTdDzuBfdmHYxJVvbA
- Selenium自动化测试第一天(下)
如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...
- 加油吧 骚年QAQ
本随笔文章,由个人博客(鸟不拉屎)转移至博客园 写于:2017 年 11 月 08 日 原地址:https://niaobulashi.com/archives/fighting.html --- 想 ...
- Oracle存储过程练习题
1.1.创建一个过程,能向dept表中添加一个新记录.(in参数) 创建过程 create or replace procedure insert_dept ( num_dept in number, ...
- spring入门(Ioc的理解)
spring对依赖的注入理解可以参考这篇:https://www.cnblogs.com/alltime/p/6729295.html 依赖注入和控制反转 传统的JavaEE程序中,直接在内部new一 ...
- 测试模拟 白屏 / FOUC
白屏和FOUC 白屏与无样式内容闪烁(FOUC)是因为不同浏览器加载与显示页面的机制不同而造成的. 我们可以通过一个实验来进行测试和模拟白屏.FOUC的现象,让我们更好的理解白屏.FOUC. 测试de ...
- kaldi - Online Audio Server(服务器客户端建立方法-旧版在线解码)
目录 一.服务器客户端识别系统建立方法 1. Command line to start the server(服务器端启动方式): 2. Command line to start the clie ...
- POJ 1873 The Fortified Forest(枚举+凸包)
Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...
- vue移动音乐app开发学习(二):页面骨架的开发
本系列文章是为了记录学习中的知识点,便于后期自己观看.如果有需要的同学请登录慕课网,找到Vue 2.0 高级实战-开发移动端音乐WebApp进行观看,传送门. 完成后的页面状态以及项目结构如下: 一: ...
- css重修之书(一):如何用css制作比1px更细的边框
如何用css制作比1px更细的边框 在项目的开发过程中,我们常常会使用到border:1px solid xxx,来对元素添加边框: 可是1px的border看起来还是粗了一些粗,不美观,那么有什么方 ...