传送门

Description

请将题目名称的首字母连起来读

Scarlet有一张$n*m$的神秘表格。现在Scarlet向表格中填数字,她会从第一行中的某个格子起,按照从左往右,从上往下的顺序依次填写从$1$开始的正整数,直至填满最后一行

为了让你确定这个表格,Scarlet会告诉你表格中的$s$组同行连续数字。之后,Scarlet会对你发起$q$次询问,你需要依次回答每个数字被填在第几行第几列中。

Input

第一行$4$个正整数分别代表$n,m,s,q$

接下来$s$行,每行两个正整数$a_i,b_i$,代表整数$a_i$到$b_i$在表格中处于同一行且连续

接下来$q$行,每行一个正整数$A_i$,表示每个询问的数字

Output

如果符合数据的表格不存在,输出一行“Impossible!”(不含引号)

再如果符合数据的表格不唯一,输出一行"Uncertain!"(不含引号)

否则输出$q$行,每行两个正整数,代表每个被询问的数字被填在第几行第几列,如果该数字不在表格内,输出"0 0"

Scarlet为了减小输出文件,以轻易地上传测试数据至服务器,她现在只需要你输出所有行列数据的异或和(包括前文的“0 0”)。

Sample Input

3 4 2 2
8 9
2 4
9
3

Sample Output

7

Hint

对于100%的数据,$1\leq n,m,A_i,a_i,b_i\leq 10^{18}$,$1\leq s,q\leq 5*10^5$,$0\leq b_i-a_i\leq m-1$

Solution

推式子……瞎搞……想明白细节还是很恶心……

考虑对于每一个形如\(a,b\)在同一行的信息,都提供了一个\(a\)所能出现的区间。具体的,考虑在一列中,\(a\)最靠左能出现在第\(1\)行,最靠右能出现在第\(m-(b-a)\)行(此时\(b\)在第\(m\)行)。如果从左向右,从上向下数,设\(1\)前面有\(x\)个\(0\),那么\(a\)是矩阵中第\(a+x\)个数。这就给出了我们一个方程:

\[(a+x)~Mod~m~\in~[1,m-b+a]
\]

将\(a\)移项,化简可得:

\[x~Mod~M~\in~[1-a,m-b]
\]

由此可以解出x的值。

显然分别对于所有的信息解方程,最后留下的\(x\)就是\(x\)能取到的值。当这个值的个数为\(0\)时无解,大于\(1\)时有多组解(矩阵不唯一)

考虑对于每个解集如何求交。

由于是一个模意义下的解,\(x\)的解集共有两种情况,第一种情况形如\(x~\in~[l,r]\),第二种情况形如\(x~\in~[0,l]~\bigcup~[r,m-1]\)。对于第一种情况显然可以直接对每个解集求交。考虑第二种情况,能否通过单独维护左右两个区间的交集,最后与第一种情况分别相交再取并集得到答案呢?事实上是不能的。考虑如图的解集:



其中解1、2、3分别是解不等式得到的解集区间。显然他们的交集是被红色区域框柱的一部分。如果对左右部分分别求交,得到的区间会是绿色线段。再与解3求交后求并的结果是空集。答案错误。

正确的姿势应该是对每个解维护补集的并集。最后对并集求补集,所有解的交集。如果您不能理解上面的话,请多读几遍画个图。维护答案的方法使用数组存储并集即可,然后按照左端点排序,扫描一遍数组,对于覆盖线段树数为\(0\)的区间累加ans即可得到答案。

对于目前的数据这样的代码交上去即可AC。但是需要注意的是这样的算法存在瑕疵。考虑下面的数据:

2 2 2 1
4 4
2 3
1

正确答案显然应该输出\("Impossible!"\)

但事实上对于一部分代码这样的数据会输出一个答案3。输出x的解集你会发现计算机算出来的矩阵长这样:

0 1
2 3
4 5

这显然是不合法的,因为他的行数不合要求。但是我们在计算矩阵的时候并没有考虑行数的限制。解决方法很简单,对于所有一定出现在最后一行的数字(即\(b~\geq (n-1)~\times~m\)),对\(x\)的范围再做一个限制。具体的,设\(t=n~\times~m~-b\),则一定不会有大于\(t\)个\(0\)出现,添加限制\(x~\leq~t\)即可。在代码中,因为我脑子有毛病,所以用了另一个计算这个限制的方法,十分脑残但是懒得改了= =。

由此计算出的\(x\),便可作为正确的答案。

Code

在实现中,因为两个1e18相乘会爆long long,\((n-1)~\times~m\)使用int128存储。

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template<typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template<typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxn = 1000010; struct Zay {
ll x;int y;
inline bool operator<(const Zay &_others) const {
return this->x < _others.x;
}
};
Zay MU[maxn]; ll n,m,ans,cnt;
int s,q;
__int128 uc,tp; ll check(); int main() {
qr(n);qr(m);qr(s);qr(q);
rg ll a,b,l1=0,r1=m-1;
uc=n-1;uc*=m;
while(s--) {
a=b=0;qr(a);qr(b);
if((1.0*b)/n > (1.0*m)) {puts("Impossible!");return 0;}
a%=m;
ll tl=((1ll-a)%m+m)%m,tr=((m-b)%m+m)%m;
if(tl <= tr) l1=mmax(l1,tl),r1=mmin(r1,tr);
else {
MU[++cnt]=(Zay) {tr+1,1};
MU[++cnt]=(Zay) {tl-1,-1};
}
tp=b;
if(tp > uc) {MU[++cnt]=(Zay) {m-(int)(tp-uc)+1,1};MU[++cnt]=(Zay) {m+1,-1};}
}
MU[++cnt]=(Zay) {-1,1};MU[++cnt]=(Zay) {l1-1,-1};MU[++cnt]=(Zay) {r1+1,1};MU[++cnt]=(Zay) {m+1,-1};
rg ll k;
std::sort(MU+1,MU+1+cnt);
k=check();
while(q--) {
a=0;qr(a);
a+=k;
if((1.0*a/n) > 1.0*m) continue;
ll _temp=(a-1)/m+1;ans^=_temp;
_temp=(a-1)%m+1;
ans^=_temp;
}
write(ans,'\n',true);
return 0;
} ll check() {
rg ll k,sum=0,tg=0,i=1,tl=-2;
while(i <= cnt) {
if(tg <= 0) sum+=MU[i].x-1-tl,k=tl;
tl=MU[i].x;
while((i <= cnt) && (MU[i].x == tl)) tg+=MU[i].y,++i;
}
if(!sum) {puts("Impossible!");exit(0);}
else if(sum > 1) {puts("Uncertain!");exit(0);}
else return k+1;
}

Summary

多个区间的交难以维护,可以考虑维护区间补集的并集,最后求补集即为交集。

【神仙题】【P4885】 灭顶之灾的更多相关文章

  1. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  2. 【BZOJ5213】[ZJOI2018]迷宫(神仙题)

    [BZOJ5213][ZJOI2018]迷宫(神仙题) 题面 BZOJ 洛谷 题解 首先可以很容易的得到一个\(K\)个点的答案. 构建\(K\)个点分别表示\(mod\ K\)的余数.那么点\(i\ ...

  3. 【BZOJ1071】[SCOI2007]组队(神仙题)

    [BZOJ1071][SCOI2007]组队(神仙题) 题面 BZOJ 洛谷 题解 首先把式子整理一下,也就是\(A*h+B*v\le C+A*minH+B*minV\) 我们正常能够想到的做法是钦定 ...

  4. 【agc006f】Blackout(神仙题)

    [agc006f]Blackout(神仙题) 翻译 给定一个\(n*n\)的网格图,有些格子是黑色的.如果\((x,y),(y,z)\)都是黑色的,那么\((y,x)\)也会被染黑,求最终黑格子数量. ...

  5. 【BZOJ3244】【NOI2013】树的计数(神仙题)

    [BZOJ3244][NOI2013]树的计数(神仙题) 题面 BZOJ 这题有点假,\(bzoj\)上如果要交的话请输出\(ans-0.001,ans,ans+0.001\) 题解 数的形态和编号没 ...

  6. 【bzoj2118&洛谷P2371】墨墨的等式(最短路神仙题)

    题目传送门:bzoj2118 洛谷P2371 这道题看了题解后才会的..果然是国家集训队的神仙题,思维独特. 首先若方程$ \sum_{i=1}^{n}a_ix_i=k $有非负整数解,那么显然对于每 ...

  7. P3202 [HNOI2009]通往城堡之路 神仙题

    这个题不是坑人吗...写个tarjan标签,然后拿这么个神仙题来搞...代码有点看不懂,有兴趣的可以去洛谷题解区看看,懒得想了. 题干: 题目描述 听说公主被关押在城堡里,彭大侠下定决心:不管一路上有 ...

  8. Codeforces & Atcoder神仙题做题记录

    鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...

  9. UOJ #460. 新年的拯救计划 神仙题+构造

    对于这个神仙题,我还能说什么~ 第一个答案=$n/2$ 还是比较好猜的. 对于构造这个树,大概就是先从 $1$ 号节点向 $n/2$ 距离以内都连一条边,再在第 $n/2$ 个节点进行这个操作,然后从 ...

  10. Codeforces 464E The Classic Problem(主席树+最短路+哈希,神仙题)

    题目链接 题意:给出一张 \(n\) 个点 \(m\) 条边的无向图,第 \(i\) 条边连接 \(u_i,v_i\),边权为 \(2^{w_i}\),求 \(s\) 到 \(t\) 的最短路. \( ...

随机推荐

  1. Linux用户及权限

    库:lib 共享库:.so ,shared object, 权限: 用户,获取资源,服务的标识符 组,指派权限,标识符 进程:以某个用户的身份在进行,有属主和属组 安全上下文(security con ...

  2. 【quick-cocos2d-lua】 基本类及用法

    1.cc.Director(导演类) 获得导演类实例:local  director = cc.Director : getInstance() 其中 cc 是Cocos2d-x Lua 类的命名空间 ...

  3. sqlalchemy 转json 的几种常用方式

    sqlalchemy 转json 的几种常用方式 # -*- coding:utf-8 -*- import datetime from flask import Flask, json, jsoni ...

  4. lintcode 466. 链表节点计数

    466. 链表节点计数 计算链表中有多少个节点.   样例 给出 1->3->5, 返回 3. /** * Definition of ListNode * class ListNode ...

  5. LeetCode 100——相同的树

    1. 题目 2. 解答 针对两棵树的根节点,有下列四种情况: p 和 q 都为空,两棵树相同: p 不为空 q 为空,两棵树不相同: p 为空 q 不为空,两棵树不相同: p 和 q 都不为空,如果两 ...

  6. 特殊符号 & 以太坊

    &表示取二进制的末尾 &1表示如果末尾是奇数和偶数两种情况 0 偶数 1奇数 举例子: int a=1;int p=&a; 其中,p是指针,&a就是将a在内存中的实际地 ...

  7. 6.hdfs的存储过程

    1.hdfs 怎么存储 切割存储 2. 为何每块是128m 与io读写速度有关,一般人的接受速度1s中,而磁盘的读写速度为100m/s,在读取文件时候需要硬盘寻找地址,一般读懂速度和寻找之间的比例是1 ...

  8. Python学习 - 入门篇1

    前言 学习渠道:慕课网:Python入门 记录原因:人总归要向记忆低头[微笑再见.gif] 记录目标:形成简洁的知识点查阅手册 变量和数据类型 变量 赋值 在Python中,可以把任意数据类型赋值给变 ...

  9. Ubuntu使用时遇到的问题

    启动时显示System program problem detected 解决办法: 打开命令行窗口:Ctrl+Alt+T 执行命令:sudo gedit /etc/default/apport 把e ...

  10. TCP系列15—重传—5、Linux中RTO的计算

    之前我们介绍的都是协议中给出的RTO计算方法,下面我们看一下linux实现中RTO的计算方法.在linux中维护了srtt.mdev.mdev_max.rttvar.rtt_seq几个状态变量用来计算 ...