Pandas重建索引
重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。
可以通过索引来实现多个操作 -
- 重新排序现有数据以匹配一组新的标签。
- 在没有标签数据的标签位置插入缺失值(NA)标记。
示例
import pandas as pd
import numpy as np
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
#reindex the DataFrame
df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B'])
print (df_reindexed)
执行上面示例代码,得到以下结果 -
A C B
0 2016-01-01 Low NaN
2 2016-01-03 High NaN
5 2016-01-06 Low NaN
重建索引与其他对象对齐
有时可能希望采取一个对象和重新索引,其轴被标记为与另一个对象相同。 考虑下面的例子来理解这一点。
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(10,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(7,3),columns=['col1','col2','col3'])
df1 = df1.reindex_like(df2)
print df1
执行上面示例代码,得到以下结果 -
col1 col2 col3
0 -2.467652 -1.211687 -0.391761
1 -0.287396 0.522350 0.562512
2 -0.255409 -0.483250 1.866258
3 -1.150467 -0.646493 -0.222462
4 0.152768 -2.056643 1.877233
5 -1.155997 1.528719 -1.343719
6 -1.015606 -1.245936 -0.295275
注意 - 在这里,
df1
数据帧(DataFrame)被更改并重新编号,如df2
。 列名称应该匹配,否则将为整个列标签添加NAN
。
填充时重新加注
reindex()
采用可选参数方法,它是一个填充方法,其值如下:
pad/ffill
- 向前填充值bfill/backfill
- 向后填充值nearest
- 从最近的索引值填充
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3'])
# Padding NAN's
print df2.reindex_like(df1)
# Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill:")
print df2.reindex_like(df1,method='ffill')
执行上面示例代码时,得到以下结果 -
col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
Data Frame with Forward Fill:
col1 col2 col3
0 1.311620 -0.707176 0.599863
1 -0.423455 -0.700265 1.133371
2 -0.423455 -0.700265 1.133371
3 -0.423455 -0.700265 1.133371
4 -0.423455 -0.700265 1.133371
5 -0.423455 -0.700265 1.133371
注 - 最后四行被填充了。
重建索引时的填充限制
限制参数在重建索引时提供对填充的额外控制。限制指定连续匹配的最大计数。考虑下面的例子来理解这个概念 -
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
df2 = pd.DataFrame(np.random.randn(2,3),columns=['col1','col2','col3'])
# Padding NAN's
print df2.reindex_like(df1)
# Now Fill the NAN's with preceding Values
print ("Data Frame with Forward Fill limiting to 1:")
print df2.reindex_like(df1,method='ffill',limit=1)
在执行上面示例代码时,得到以下结果 -
col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
Data Frame with Forward Fill limiting to 1:
col1 col2 col3
0 0.247784 2.128727 0.702576
1 -0.055713 -0.021732 -0.174577
2 -0.055713 -0.021732 -0.174577
3 NaN NaN NaN
4 NaN NaN NaN
5 NaN NaN NaN
注意 - 只有第
7
行由前6
行填充。 然后,其它行按原样保留。
重命名
rename()
方法允许基于一些映射(字典或者系列)或任意函数来重新标记一个轴。
看看下面的例子来理解这一概念。
示例
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,3),columns=['col1','col2','col3'])
print df1
print ("After renaming the rows and columns:")
print df1.rename(columns={'col1' : 'c1', 'col2' : 'c2'},
index = {0 : 'apple', 1 : 'banana', 2 : 'durian'})
执行上面示例代码,得到以下结果 -
col1 col2 col3
0 0.486791 0.105759 1.540122
1 -0.990237 1.007885 -0.217896
2 -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479
After renaming the rows and columns:
c1 c2 col3
apple 0.486791 0.105759 1.540122
banana -0.990237 1.007885 -0.217896
durian -0.483855 -1.645027 -1.194113
3 -0.122316 0.566277 -0.366028
4 -0.231524 -0.721172 -0.112007
5 0.438810 0.000225 0.435479
rename()
方法提供了一个inplace
命名参数,默认为False
并复制底层数据。 指定传递inplace = True
则表示将数据重命名。
Pandas重建索引的更多相关文章
- Pandas | 08 重建索引
重新索引会更改DataFrame的行标签和列标签. 可以通过索引来实现多个操作: 重新排序现有数据以匹配一组新的标签. 在没有标签数据的标签位置插入缺失值(NA)标记. import pandas a ...
- pandas重新索引
#重新索引会更改DataFrame的行标签和列标签.重新索引意味着符合数据以匹配特定轴上的一组给定的标签. #可以通过索引来实现多个操作 - #重新排序现有数据以匹配一组新的标签. #在没有标签数据的 ...
- 重建索引提高SQL Server性能
大多数SQL Server表需要索引来提高数据的访问速度,如果没有索引,SQL Server 要进行表格扫描读取表中的每一个记录才能找到索要的数据.索引可以分为簇索引和非簇索引,簇索引通过重排表中的数 ...
- DBCC DBREINDEX重建索引提高SQL Server性能
大多数SQL Server表需要索引来提高数据的访问速度,如果没有索引,SQL Server 要进行表格扫描读取表中的每一个记录才能找到索要的数据.索引可以分为簇索引和非簇索引,簇索引通过重排表中的数 ...
- SQL Server 2012 批量重建索引
关于索引的概念可以看看宋大牛的博客 T-SQL查询高级—SQL Server索引中的碎片和填充因子 整个数据库的索引很多,索引碎片多了,不可能一个个的去重建,都是重复性的工作,所以索性写了个存储过程, ...
- SQL Server重建索引计划
每周日2点进行”一致性检查“ 每周六1点进行”重建索引“,重建索引会自动完成更新统计信息操作
- SQL Server通过整理索引碎片和重建索引提高速度
本文章转载:http://database.51cto.com/art/201108/282408.htm SQL Server数据库中,当索引碎片太多时,就会拖慢数据库查询的速度.这时我们可以通过整 ...
- 11G在线重建索引
SQL> select count(*) from test_idx; COUNT(*) ---------- 19087751 SQL> select segment_name,segm ...
- Oracle 重建索引脚本
该指数是一个有力的武器,以提高数据库的查询性能. 没有索引,喜欢同样的标签库没有书籍,找书,他们想预订比登天还难.中,尤其是在批量的DML的情形下会产生对应的碎片.以及B树高度会发生对应变化.因此能够 ...
随机推荐
- server.xml文件详解
一.server.xml文件介绍 1.server.xml作用 Server.xml配置文件用于对整个容器进行相关的配置. 2.server.xml文件的配置元素列表 <Server&g ...
- 3 CActiveXUI的一个Bug
如果主窗口直接用变量生成,则关闭窗口时会产生崩溃 如果用new的方式生成,则不会崩溃,所以给出一个临时的快速解决方案,即主窗口都用new生成,_tWinMain改为下面这样: i ...
- Linux基础命令(四)
作业一:1) 开启Linux系统前添加一块大小为15G的SCSI硬盘 [root@bogon ~]# fdisk -l Disk /dev/sda: 21.5 GB, 21474836480 byte ...
- 海量数据存储之nosql教程(转)
add by zhj: 不错的系列,作者介绍了NoSQL数据库,并重点研究了Memcached和Redis,不知道后续是否还有其它NoSQL数据库的文章 海量数据存储之nosql教程之-01基础理论 ...
- window安装redis数据库
1.下载安装包 1.百度网盘链接:https://pan.baidu.com/s/1MrAK5Suc1xpzkbp1WQbP0A 提取码:u9uq 2.GitHub:https://github.co ...
- 我的Android进阶之旅------>Android Studio 快捷键整理分享
正式转战Android Studio了,首先把Android Studio的快捷键摘录下来,以备后用. (官网的快捷键列表如下 https://developer.android.com/studi ...
- 使用.gitignore忽略文件
单个项目配置 在.git文件夹同目录下打开git bash,执行命令: touch .gitignore 生成“.gitignore”文件. 在”.gitignore” 文件里输入你要忽略的文件夹及其 ...
- 设置SVN提交日志必填
1.打开visualSVN Server2.打开Repositories3.右键需要控制的项目->所有任务->manage hooks...4.选择Hooks tab,点击Pre-comm ...
- 微信小程序 使用腾讯地图SDK详解及实现步骤
信小程序 使用腾讯地图SDK详解及实现步骤 微信小程序JavaScript SDK: 官方文档:http://lbs.qq.com/qqmap_wx_jssdk/index.html 步骤: 1 ...
- 安装三大浏览器驱动driver
1.chromedriver 下载地址:https://code.google.com/p/chromedriver/downloads/list 2.Firefox的驱动geckodriver 下载 ...