链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4095

题意:

给n个点(n≤99)的有向带权图,找若干个有向圈,使得每个点恰好属于一个圈。
要求权和尽量小。注意即使(u,v)和(v,u)都存在,它们的权值也不一定相同。

分析:

每个点恰好属于一个有向圈,意味着每个点都有一个唯一的后继。
反过来,只要每个点都有唯一的后继,每个点一定恰好属于一个圈。
把每个点i拆成Xi和Yi,原图中的有向边u->v对应二分图中的边Xu->Yv,
则题目转化为了这个二分图上的最小权完美匹配问题。

代码:

 #include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using namespace std; /// 结点下标从0开始,注意maxn
struct MCMF {
static const int maxn = * + ;
static const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, cap, flow, cost;
}; int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量 void init(int n) {
this->n = n;
for(int i = ; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, , cost});
edges.push_back((Edge){to, from, , , -cost});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BellmanFord(int s, int t, int& flow, int& cost) {
for(int i = ; i < n; i++) d[i] = INF;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = ;
for(int i = ; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = ;
}
}
}
}
if(d[t] == INF) return false;
//if(flow + a[t] > flow_limit) a[t] = flow_limit - flow;
flow += a[t];
cost += d[t] * a[t];
for(int u = t; u != s; u = edges[p[u]].from) {
edges[p[u]].flow += a[t];
edges[p[u]^].flow -= a[t];
}
return true;
}
// 需要保证初始网络中没有负权圈
pair<int,int> MincostMaxflow(int s, int t) {
int flow = , cost = ;
while(BellmanFord(s, t, flow, cost));
//while(flow < flow_limit && BellmanFord(s, t, flow_limit, flow, cost));
return make_pair(flow, cost);
}
} mm; int main() {
int n;
while(scanf("%d", &n) && n) {
mm.init(n*+);
int start = , finish = n*+;
for(int j, d, i = ; i <= n; i++) {
mm.AddEdge(start, i, , );
mm.AddEdge(i+n, finish, , );
while(true) {
scanf("%d", &j);
if(j == ) break;
scanf("%d", &d);
mm.AddEdge(i, j+n, , d);
}
}
pair<int,int> p = mm.MincostMaxflow(start, finish);
if(p.first < n) printf("N\n");
else printf("%d\n", p.second);
}
return ;
}

UVa 1349 - Optimal Bus Route Design(二分图最佳完美匹配)的更多相关文章

  1. Uva1349Optimal Bus Route Design(二分图最佳完美匹配)(最小值)

    题意: 给定n个点的有向图问,问能不能找到若干个环,让所有点都在环中,且让权值最小,KM算法求最佳完美匹配,只不过是最小值,所以把边权变成负值,输出时将ans取负即可 这道题是在VJ上交的 #incl ...

  2. UVa 1349 Optimal Bus Route Design (最佳完美匹配)

    题意:给定一个有向图,让你找出若干个图,使得每个点恰好属于一个圈,并且总的权和最小. 析:每个点都有唯一的一个圈,也就是说每一点都有唯一的后继,那么我们就可以转换成求一个图的最小权的最佳完全匹配,可以 ...

  3. UVA 1349 Optimal Bus Route Design (二分图最小权完美匹配)

    恰好属于一个圈,那等价与每个点有唯一的前驱和后继,这让人想到了二分图, 把一个点拆开,点的前驱作为S集和点的后继作为T集,然后连边,跑二分图最小权完美匹配. 写的费用流..最大权完美匹配KM算法没看懂 ...

  4. UVA 1349 Optimal Bus Route Design 最优公交路线(最小费用流,拆点)

    题意: 给若干景点,每个景点有若干单向边到达其他景点,要求规划一下公交路线,使得每个景点有车可达,并且每个景点只能有1车经过1次,公车必须走环形回到出发点(出发点走2次).问是否存在这样的线路?若存在 ...

  5. UVA - 1045 The Great Wall Game(二分图最佳完美匹配)

    题目大意:给出棋盘上的N个点的位置.如今问将这些点排成一行或者一列.或者对角线的最小移动步数(每一个点都仅仅能上下左右移动.一次移动一个) 解题思路:暴力+二分图最佳完美匹配 #include < ...

  6. UVa1349 Optimal Bus Route Design(二分图最佳完美匹配)

    UVA - 1349 Optimal Bus Route Design Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...

  7. UVA - 1349 D - Optimal Bus Route Design

    4. D - Optimal Bus Route Design 题意:给出n(n<=100)个点的带权有向图,找出若干个有向圈,每个点恰好属于一个有向圈.要求权和尽量小. 注意即使(u,v)和( ...

  8. UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配

    /** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...

  9. UVa 11383 少林决胜(二分图最佳完美匹配)

    https://vjudge.net/problem/UVA-11383 题意: 给定一个N×N矩阵,每个格子里都有一个正整数W(i,j).你的任务是给每行确定一个整数row(i),每列也确定一个整数 ...

随机推荐

  1. Scrapy框架学习(一)Scrapy框架介绍

    Scrapy框架的架构图如上. Scrapy中的数据流由引擎控制,数据流的过程如下: 1.Engine打开一个网站,找到处理该网站的Spider,并向该Spider请求第一个要爬取得URL. 2.En ...

  2. html空白文字宽度

    原文链接 名称 编号 描述     不断行的空白(1个字符宽度)     半个空白(1个字符宽度)     一个空白(2个字符宽度)     窄空白(小于1个字符宽度) 小写加分号!

  3. 简单的js定时器

    var flag = 0; var time = 0; var stoptime = setInterval(function(){ if (flag<9999999) { //执行定时器 } ...

  4. 前端小结(5)---- iframe

    iframe对应的div: <div id="iframezone"> <iframe id="iframe" frameborder='0' ...

  5. 中南oj 1215: 稳定排序

    1215: 稳定排序 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 111  Solved: 43 [Submit][Status][Web Boar ...

  6. log4j的简单使用

    引入jar包org.apache.log4j.Logger,项目src目录下建立一个log4j.properties配置文件 log4j.rootLogger=INFO,A1,R log4j.appe ...

  7. springMVC @Component-@Resource-@Repository-@Service-@Controller的区别和理解

    作用: @Component------------------------泛指组件,当组件不好归类的时候,我们可以使用这个注解进行标注.(Component-------成分; 组分; 零件) @R ...

  8. 记录开发Nodejs c++ addon的一些经验(四、electron)

    如果我们要在electron里使用我们开发的addon,那么直接使用是不行的. 官方的解释是:Electron 同样也支持原生模块,但由于和官方的 Node 相比使用了不同的 V8 引擎,如果你想编译 ...

  9. RN记录

    react-native run-android 出现 java.lang.nullpointerexception(no error message) 错误 删除 工程目录\android.grad ...

  10. Java中避免空指针的几个方法

    equals Object类中的equals 方法在非空对象引用上实现相等关系,具有对称性 x.equals(y) 和 y.equals(x) 结果是一样的,但当x == null时会抛出空指针异常 ...