Prison rearrangement
 
Time Limit: 3000MS   Memory Limit: 10000K
Total Submissions: 2158   Accepted: 971

Description

In order to lower the risk of riots and escape attempts, the boards of two nearby prisons of equal prisoner capacity, have decided to rearrange their prisoners among themselves. They want to exchange half of the prisoners of one prison, for half of the prisoners of the other. However, from the archived information of the prisoners' crime history, they know that some pairs of prisoners are dangerous to keep in the same prison, and that is why they are separated today, i.e. for every such pair of prisoners, one prisoners serves time in the first prison, and the other in the second one. The boards agree on the importance of keeping these pairs split between the prisons, which makes their rearrangement task a bit tricky. In fact, they soon find out that sometimes it is impossible to fulfil their wish of swapping half of the prisoners. Whenever this is the case, they have to settle for exchanging as close to one half of the prisoners as possible.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two non-negative integers m and r, 1 < m < 200 being the number of prisoners in each of the two prisons, and r the number of dangerous pairs among the prisoners. Then follow r lines each containing a pair xi yi of integers in the range 1 to m,which means that prisoner xi of the first prison must not be placed in the same prison as prisoner yi of the second prison.

Output

For each test scenario, output one line containing the largest integer k <= m/2 , such that it is possible to exchange k prisoners of the first prison for k prisoners of the second prison without getting two prisoners of any dangerous pair in the same prison.

Sample Input

3
101 0
3 3
1 2
1 3
1 1
8 12
1 1
1 2
1 3
1 4
2 5
3 5
4 5
5 5
6 6
7 6
8 7
8 8

Sample Output

50
0
3
原文地址
题目意思:两个监狱,各有n个犯人,每个两个监狱之间一些犯人之间有一定的关系,对于有关系的犯人不能放在同一个监狱,原状态肯定是满足的,
因为存在这种关系的不存在同一个监狱的。求最大交换次数使得条件依然满足,并且交换次数不能超过n/2。 后记:我们两队的比赛题,琨哥说题目很水,我信了,这能水,唉,高估我们能力了,主要是用到 dfs + o1 背包问题,但是的确很难想到,我还想着用并查集呢,不会,参考了下别人的代码;
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int SIZE = ;
int m;
int r;
//map[i][j]表示i和j是否会冲突
int map[SIZE][SIZE];
//A组里的人数
int aSize;
//b组里的人数
int bSize;
//dp[i][j] 表示用A组的i个人换B组的j个人是否可行
bool dp[SIZE][SIZE];
//visited[0][i] 表示用A组中的点i是否被访问过
//visited[1][i] 表示用B组中的点i是否被访问过
bool visited[][SIZE];
void Init()
{
memset( map, , sizeof(map) );
memset( visited, , sizeof(visited) );
memset( dp, , sizeof(dp) );
}
void Input()
{
cin >> m >> r;
for( int i=; i<r; i++ )
{
int a, b;
cin >> a >> b;
map[a][b] = ;
}
}
//side=0 表示当前正在搜索A组
//side=1 表示当前正在搜索B组
//id 表示当前正在搜索的编号
void DFS( int side, int id )
{
visited[side][id] = true;
//如果当前搜索的是A组
if( side == )
{
//记录A组中的元素个数
aSize++;
for( int i=; i<=m; i++ )
{
//搜索的是B组中对应的点
if( map[id][i] && !visited[][i] )//看一组的 id ,是否有和二组的 i ,相连的不,并且二组的没有被标记;
{
DFS( , i ); //搜寻一组中是否有与二组相连的数;
}
}
}
else
{
bSize++;
for( int j=; j<=m; j++ )
{
if( map[j][id] && !visited[][j] )
{
DFS( , j );
}
}
}
}
//利用二维背包计算
void Knapsack()
{
dp[][] = true;
for( int x=m/; x>=aSize-; x-- )
{
for( int y=m/; y>=bSize-; y-- )
{
if( dp[x][y] || dp[x - aSize][y - bSize] )
{
// printf("%d %d\n",x,y);
dp[x][y] = true;
}
}
}
}
void Output()
{
for( int i=m/; i>=; i-- )
{
if( dp[i][i] ) // dp[i][i]; 表示各方都拿出来 i 个人,进行交换;
{
cout << i << endl;
break;
}
}
}
int main()
{
int caseNum;
cin >> caseNum;
while( caseNum-- )
{
Init();
Input();
for( int i=; i<=m; i++ )
{
//跳过已经处理过的节点
if( visited[][i] ) continue;
//计算A、B中的人数
aSize = ;
bSize = ;
DFS( , i ); // 搜索一次,就出现两组不相容的团体;
//利用二维背包计算
Knapsack();
}
for( int i=; i<=m; i++ )
{
if( visited[][i] ) continue;
aSize = ;
bSize = ;
DFS( , i );
Knapsack();
}
Output();
}
return ;
}

poj 1636 Prison rearrangement的更多相关文章

  1. POJ 1636 Prison rearrangement DFS+0/1背包

    题目链接: id=1636">POJ 1636 Prison rearrangement Prison rearrangement Time Limit: 3000MS   Memor ...

  2. POJ 1636 DFS+DP

    思路: 先搜索出来如果选这个点 其它哪些点必须选 跑个背包就好了 //By SiriusRen #include <cstdio> #include <cstring> #in ...

  3. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  4. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  5. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

  6. poj 动态规划的主题列表和总结

    此文转载别人,希望自己可以做完这些题目. 1.POJ动态规划题目列表 easy:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, ...

  7. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  8. POJ动态规划题目列表

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  9. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. WebLogic Operator初试

    时隔几个月,重拾WebLogic 为什么是WebLogic 简单说一句就是,因为WebLogic在中间件里面够复杂. Server不同的角色 AdminServer和Managed Server之间的 ...

  2. 如何获取gcr等镜像

    在cloud.docker.com上注册一个用户,然后登录 然后在github.com上注册一个用户 通过github Desktop建立一个repository,同时加入一个Dockerfile,然 ...

  3. 修复CentOS文件系统

    CentOS经常出现一些像 Cannot mkdir: Structure needs cleaning 的文件系统错误,而且在正常模式下无法umount来进行修复.很多时候只能在rescue模式下进 ...

  4. http://blog.csdn.net/a9529lty/article/details/6454156

    http://blog.csdn.net/a9529lty/article/details/6454156

  5. tomcat下配置https环境(windows环境)

    在网上搜了一下,内容不是很完善.现进行整理,做个学习笔记,以备以后使用. (1)进入到jdk下的bin目录 (2)输入如下指令“keytool -v -genkey -alias tomcat -ke ...

  6. WebService基于SoapHeader实现安全认证[webservice][.net][安全][soapheader]

    摘 自: http://blog.sina.com.cn/s/blog_72b7a82d0100yyp8.html WebService基于SoapHeader实现安全认证[webservice][. ...

  7. [服务器安全]升级OpenSSH,OpenSSL,vsftp,关闭NTP服务

    公司的旧版直播服务器使用的是CentOS 6.7,很多软件包都是几年前的了.最近很多安全相关的新闻充斥着IT圈,先是Intel芯片有重大安全漏洞,后面MacOS爆安全漏洞.所以,对于安全问题还真不能小 ...

  8. vue - v-text 和 v-html

    1.官方有了{{data}}绑定数据了,为啥还要v-text 因为网络问题,可以我们会卡到看“{{}}”,很尴尬吧!!! => 因此推荐用v-text 2. v-html是啥? 能吃吗 , v- ...

  9. vue - 条件语句

    1.与小程序不同之处一,小程序无论变量还是常亮都可以用双向绑定来解决{{}},而vue一旦双(单)引号包起来以后就失效了. 2.注意一点,切记双引号注意不要混淆哈,这里是一排双引号包单引号,那里是一排 ...

  10. angular 事件广播和事件监听

    一,angularjs $broadcast $emit $on的处理思想 在一个controller里面通过事件触发一个方法,在方法里面通过$broadcast或$emit来定义一个变量,在父,子c ...