题目描述

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。

输入

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。
接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

输出

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

样例输入

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

样例输出

NO
YES


题解

并查集

由于题目没有像某食物链一样规定了顺序,只是问能否同时全部成立。

所以可以随意的改变条件的顺序。

那我们就可以先把所有相等关系的条件挑出来,并在并查集中合并。

然后再判定所有的不等关系,看它们的祖先是否相同。

然而题目中i和j的值太大,所以需要离散化,方法有多种,不多说了。

#include <cstdio>
#include <algorithm>
using namespace std;
struct data
{
int num , p;
}v[2000010];
int f[2000010] , q[2000010] , e[1000010] , tot;
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
void merge(int x , int y)
{
int tx = find(x) , ty = find(y);
f[tx] = ty;
}
bool cmp(data a , data b)
{
return a.num < b.num;
}
int main()
{
int t;
scanf("%d" , &t);
while(t -- )
{
int n , i , flag = 1;
tot = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d%d%d" , &v[i].num , &v[i + n].num , &e[i]);
v[i].p = i;
v[i + n].p = i + n;
}
sort(v + 1 , v + 2 * n + 1 , cmp);
for(i = 1 ; i <= 2 * n ; i ++ )
{
if(v[i].num != v[i - 1].num) tot++;
q[v[i].p] = tot;
}
for(i = 1 ; i <= tot ; i ++ )
f[i] = i;
for(i = 1 ; i <= n ; i ++ )
if(e[i] == 1)
merge(q[i] , q[i + n]);
for(i = 1 ; i <= n ; i ++ )
{
if(!e[i] && find(q[i]) == find(q[i + n]))
{
flag = 0;
break;
}
}
printf("%s\n" , flag ? "YES" : "NO");
}
return 0;
}

【bzoj4195】[Noi2015]程序自动分析 离散化+并查集的更多相关文章

  1. P1955 [NOI2015]程序自动分析[离散化+并查集]

    大水题一道,不明白为什么你谷评了个蓝.一看就是离散化,先去满足相等的条件,相等即为两点联通,或者说在同一个集合内.再看不相等,只有两元素在同一集合才不满足.裸的disjoint-set直接上,常数巨大 ...

  2. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

  3. [NOI2015]程序自动分析(并查集)

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  4. 【luoguP1955 】[NOI2015]程序自动分析--普通并查集

    题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变 ...

  5. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  6. 【BZOJ4195】【NOI2015】程序自动分析(并查集)

    [BZOJ4195][NOI2015]程序自动分析(并查集) 题面 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设 ...

  7. [UOJ#127][BZOJ4195][NOI2015]程序自动分析

    [UOJ#127][BZOJ4195][NOI2015]程序自动分析 试题描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2, ...

  8. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  9. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

随机推荐

  1. canvas画的文字在安卓移动设备上可以显示,但是在ios移动设备上无法显示

    不用担心iOS Safari不支持canvas,查看https://caniuse.com/ 发现是支持的 ctx.font = "0.16rem Arial"; 为了适配移动端直 ...

  2. Java基础——NIO(二)非阻塞式网络通信与NIO2新增类库

    一.NIO非阻塞式网络通信 1.阻塞与非阻塞的概念  传统的 IO 流都是阻塞式的.也就是说,当一个线程调用 read() 或 write() 时,该线程被阻塞,直到有一些数据被读取或写入,该线程在 ...

  3. 成都Uber优步司机奖励政策(1月26日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. MongoDB-Ubuntu环境下安装

    1.在官网下载安装包,下载后为 mongodb-linux-x86_64-ubuntu1604-3.4.6.tgz 解压:tar -zxvf mongodb-linux-x86_64-ubuntu16 ...

  5. 抽样分布(2) t分布

    定义 t分布 设X ~ N(0,1),Y ~ χ2(n),且X,Y相互独立,则称随机变量 服从自由度为n的t分布(学生氏分布) 记为 t~t(n),其概率密度为 由于tn(x)是偶函数,其图形关于y轴 ...

  6. RSA加密通信小结(二)-新版本APP与后台通信交互内容修改方案

    注1:本次修改分为两步,首先是内容相关的修改,待其完成之后,再进行加密通信项(粗体字备注)修改. 1.新的提交后台的格式包括:data,token(预留字段,暂时后台不校验),userId(已有的不删 ...

  7. hdu1217Arbitrage(floyd+map)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  8. Linux命令应用大词典-第16章 归档和压缩

    16.1 tar:进行归档和压缩 16.2 gzip:压缩或解压缩gzip文件 16.3 gunzip:解压缩gzip文件 16.4 zcmp:比较gzip压缩文件 16.5 zdiff:比较gzip ...

  9. 第五模块·WEB开发基础-第3章jQuery&Bootstrap

    01-jQuery介绍 02-如何使用jQuery 03-jQuery的入口函数 04-jQuery对象和JS对象的相互转换 05-jQuery如何操作DOM 06-底层选择器 07-基本过滤器 08 ...

  10. 地牢逃脱(BFS(广度优先搜索))

    题目描述 给定一个 n 行 m 列的地牢,其中 '.' 表示可以通行的位置,'X' 表示不可通行的障碍,牛牛从 (x0 , y0 ) 位置出发,遍历这个地牢,和一般的游戏所不同的是,他每一步只能按照一 ...