http://www.lydsy.com/JudgeOnline/problem.php?id=1911

又是一个显然的dp……好吧我懒得讲了。

s[i]是战斗力前缀和。

我们仍然设k<j<i,化简一下得到f[j]-2*a*s[i]s[j]+a*s[j]^2-b*s[j]>f[k]-2*a*s[i]s[k]+a*s[k]^2-b*s[k]

于是得到:

0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]))<s[i]

显然可以斜率优化了。

(为什么变号,emmmmmm……a<0)

至于剩下的套路部分就请看土地购买这道题的解法吧。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll a,b,c;
ll f[N],q[N],s[N];
inline double suan(int k,int j){
return 0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]));
}
int main(){
n=read(),a=read(),b=read(),c=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)s[i])l++;
ll k=s[i]-s[q[l]];
f[i]=f[q[l]]+a*k*k+b*k+c;
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1911:[Apio2010]特别行动队——题解的更多相关文章

  1. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  2. BZOJ1911 [Apio2010]特别行动队 【斜率优化】

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 5005  Solved: 2455 [Submit][Sta ...

  3. 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)

    bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...

  4. BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...

  5. [bzoj1911][Apio2010]特别行动队

    Description 有个元素,可以将个元素分成多组,每组的元素编号必须是连续的. 设每组的为,则每组的价值公式为. 求最大价值和. Input 输入由三行组成. 第一行包含一个整数,表示士兵的总数 ...

  6. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  7. [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】

    题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...

  8. bzoj1911 [Apio2010]特别行动队commando

    题目链接 斜率优化 #include<cstdio> #include<cstdlib> #include<string> #include<cstring& ...

  9. 【文文殿下】[APIO2010]特别行动队 题解

    基本上是一个斜率优化裸题了 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int max ...

随机推荐

  1. leetcode笔记9 Move Zeroes

    题目要求: Given an array nums, write a function to move all 0's to the end of it while maintaining the r ...

  2. Ping隧道

    1.研究原因: 校园内网的探索,校内电子图书馆资源的利用,认证校园网 2.目的: 内网服务器:在一台因防火墙等原因仅限icmp数据通过的 公网服务器 : 建立icmp 隧道链接,  并在公网服务器上进 ...

  3. Selenium(Python)驱动Firefox浏览器

    我的版本是Firefox Setup 52.7.0.exe+geckodriver-v0.15.0-win64.zip, 把驱动geckodriver.exe放到Python安装目录下, 也可以指定驱 ...

  4. JAVA基础学习之路(十)this关键字

    class Book { String name; int price; int num;//构造方法之间的互相调用解决了代码的重复问题,但是一定要留出口 public Book() { ,); } ...

  5. [SHELL]linux环境变量

  6. java面试整理

    IO和NIO的区别 这是一个很常见的问题,如果单纯的只回答IO和NIO的区别,只能算及格.我个人觉得应该从以下几个方面回答: 1).IO简介, 2).TCP的三次握手,因为这也是两者的区别之一, 3) ...

  7. *.hbm.xml作用是什么

    实体与表的映射关系通过XML来描述的文件.在 hibernate.cfg.xml中管理,在项目启动的时候加载到内存. hbm指的是hibernate的映射文件 映射文件也称映射文档,用于向Hibern ...

  8. POJ 3415 Common Substrings(后缀数组)

    Description A substring of a string T is defined as: T(i, k)=TiTi+1...Ti+k-1, 1≤i≤i+k-1≤|T|. Given t ...

  9. 什么是Frozen Binary

    对于Python来说,你可以将Python的字节码,PVM(也就是解析器),以及需要的相关类库,打包成一个package,这个package实际上是一个二进制可执行文件,这样,用户获取到这个packa ...

  10. 使用libpcab抓包&处理包

    #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h& ...