BZOJ1911:[Apio2010]特别行动队——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1911
又是一个显然的dp……好吧我懒得讲了。
s[i]是战斗力前缀和。
我们仍然设k<j<i,化简一下得到f[j]-2*a*s[i]s[j]+a*s[j]^2-b*s[j]>f[k]-2*a*s[i]s[k]+a*s[k]^2-b*s[k]
于是得到:
0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]))<s[i]
显然可以斜率优化了。
(为什么变号,emmmmmm……a<0)
至于剩下的套路部分就请看土地购买这道题的解法吧。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll a,b,c;
ll f[N],q[N],s[N];
inline double suan(int k,int j){
return 0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]));
}
int main(){
n=read(),a=read(),b=read(),c=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)s[i])l++;
ll k=s[i]-s[q[l]];
f[i]=f[q[l]]+a*k*k+b*k+c;
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ1911:[Apio2010]特别行动队——题解的更多相关文章
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- BZOJ1911 [Apio2010]特别行动队 【斜率优化】
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 5005 Solved: 2455 [Submit][Sta ...
- 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)
bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...
- BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...
- [bzoj1911][Apio2010]特别行动队
Description 有个元素,可以将个元素分成多组,每组的元素编号必须是连续的. 设每组的为,则每组的价值公式为. 求最大价值和. Input 输入由三行组成. 第一行包含一个整数,表示士兵的总数 ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
- [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】
题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...
- bzoj1911 [Apio2010]特别行动队commando
题目链接 斜率优化 #include<cstdio> #include<cstdlib> #include<string> #include<cstring& ...
- 【文文殿下】[APIO2010]特别行动队 题解
基本上是一个斜率优化裸题了 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int max ...
随机推荐
- linux下免安装版本mysql5.5 配置
进入/usr/local #cd /usr/local 下载 #wget http://dev.mysql.com/get/Downloads/MySQL-5.5/mysql-5.5.39-linux ...
- git 取消commit
git如何撤销上一次commit操作 1.第一种情况:还没有push,只是在本地commit git reset --soft|--mixed|--hard <commit_id> git ...
- java 前后端 日期转换
1.前传后 @DateTimeFormat(pattern="yyyy-MM-dd") private Date payTime; 2.后传前 @JsonFormat(patter ...
- hdu2147kiki's game(找规律)
kiki's game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 40000/10000 K (Java/Others)Total ...
- 怎样安装Android Studio
在浏览器地址栏输入 http://www.android-studio.org/ 打开Android Studio中文社区, 下载安装包: 这里需要注意的是SDK的目录, 我没有选择默认的目录, 而是 ...
- loadrunner_遇到cookie接口_3种应对方法
方法一:是调用登录接口,在调用登录后的接口 方法二:手动储存cookie,写死cookie 方法一:提前登录收集cookie,写成参数化文件 方法一,案例(就是先登录,再写登录后的接口): 注:use ...
- (转) GEM透视阴影贴图
转载:小道 透视阴影贴图(Perspective Shadow Maps, PSMs)是由Stamminger和Drettakis在 SIGGRAPH 2002上提出的一种阴影贴图(Shadow Ma ...
- 【MFC】学习与问题整合
需要源码联系邮件:kangxlchn@163.com 1.新建一个MFC工程(基于对话框) 环境:vs2017 统统NEXT 新建完成后打开MFCPrj.cpp文件 打开类试图 每创建一个MFC项目, ...
- 图像质量评价指标之 PSNR 和 SSIM
1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 给定一个大小为 \(m×n\) 的干净图像 \(I\) 和噪声图像 \(K\),均方误差 \((MSE)\) 定义 ...
- 名人问题 算法解析与Python 实现 O(n) 复杂度 (以Leetcode 277. Find the Celebrity为例)
1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n peopl ...