Humble Numbers

For a given set of K prime numbers S = {p1, p2, ..., pK}, consider the set of all numbers whose prime factors are a subset of S. This set contains, for example, p1, p1p2, p1p1, and p1p2p3 (among others). This is the set of `humble numbers' for the input set S. Note: The number 1 is explicitly declared not to be a humble number.

Your job is to find the Nth humble number for a given set S. Long integers (signed 32-bit) will be adequate for all solutions.

PROGRAM NAME: humble

INPUT FORMAT

Line 1: Two space separated integers: K and N, 1 <= K <=100 and 1 <= N <= 100,000.
Line 2: K space separated positive integers that comprise the set S.

SAMPLE INPUT (file humble.in)

4 19
2 3 5 7

OUTPUT FORMAT

The Nth humble number from set S printed alone on a line.

SAMPLE OUTPUT (file humble.out)

27

题意:对于一给定的素数集合 S = {p1, p2, ..., pK},考虑一个正整数集合,该集合中任一元素的质因数全部属于S。这个正整数集合包括,p1、p1*p2、p1*p1、p1*p2*p3...(还有其它)。该集合被称为S集合的“丑数集合”。

注意:我们认为1不是一个丑数。

你的工作是对于输入的集合S去寻找“丑数集合”中的第N个“丑数”。所有答案可以用longint(32位整数)存储。

补充:丑数集合中每个数从小到大排列,每个丑数都是素数集合中的数的乘积,第N个“丑数”就是在能由素数集合中的数相乘得来的(包括它本身)第n小的数。

/*
ID: LinKArftc
PROG: humble
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
const int maxm = ; ll num[maxm], ri[maxm], ans[maxn];
int k, n; int main() {
freopen("humble.in", "r", stdin);
freopen("humble.out", "w", stdout);
int tot = ;
scanf("%d %d", &n, &k);
for (int i = ; i < n; i ++) scanf("%lld", &num[i]);
ans[tot ++] = ;
memset(ri, , sizeof(ri));
while (tot < k + ) {
int ii;
ll mi = 0x7fffffffffffffff;
for (int i = ; i < n; i ++) {
while (num[i] * ans[ri[i]] <= ans[tot-]) ri[i]++;
if (num[i] * ans[ri[i]] < mi) {
mi = num[i] * ans[ri[i]];
ii = i;
}
}
ans[tot++] = mi;
ri[ii] ++;
}
printf("%lld\n", ans[k]); return ;
}

humble_USACO的更多相关文章

随机推荐

  1. 第72天:jQuery实现下拉菜单

    jQuery实现下拉菜单 一.居中 1.块元素居中:给块元素本身设置:margin:0 auto;,块元素必须设置宽度 2.行内块元素居中:给元素父级设置text-algin:center; < ...

  2. jsp当做第二个servlet request的生命周期 请求 响应 不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束 request的域消失

    jsp当做第二个servlet  request的生命周期   请求 响应  不管中间经历多少个servlet 只要最后一个serlvt执行后 则生命周期结束  request的域消失

  3. BZOJ 1597 土地购买(斜率优化DP)

    如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...

  4. c/c++中的关键字(static、const、inline、friend)

    static:1.a.c语言中static修饰的局部变量在编译时赋初始值,只赋初始值一次,在函数运行时已有初值,每次调用函数时不用重新赋值,指示保留上次 函 数调用结束时的值. 如果定义局部变量不赋初 ...

  5. javascript中检测一个变量的类型

    /** * 怎么检测一个变量的类型? * 在js中检测对象类型主要有三种:typeof, instanceof, constructor, 这几种都可以检测对象的类型. * 另外还可以适应jQuery ...

  6. BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)

    前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...

  7. 【题解】APIO2018 Duathlon 铁人两项

    首先对于给出的图建立圆方树,然后我们分类讨论每一个点作为中间的中转站出现的情况有多少种,累积到 \(ans\) 中. 对于圆点:在任意两个子树内分别选出一个节点都是合法的. 对于方点:连接向方点的点均 ...

  8. [BZOJ2821]作诗

    description 在线询问区间内出现次数为正偶数的数的种数. data range \[n,m\le 10^5\] solution 分块大法好 首先离散化权值 这种对于权值做询问并且询问放在一 ...

  9. [洛谷P2106]Sam数

    题目大意:问长度为$n$的$Sam$数有几个,$Sam$数的定义为没有前导零,相邻两个数字之差绝对值小于等于$2$的数 题解:发现转移方程一定,可以矩阵快速幂. 卡点:没有特判$n=1$的情况 C++ ...

  10. BZOJ4514:[SDOI2016]数字配对——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4514 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj ...