rolllup巧用
--构造环境
drop table dept purge;
drop table emp purge;
create table dept as select * from scott.dept;
create table emp as select * from scott.emp;
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
set term off
set heading on
set verify off
set feedback off
set linesize 2000
set pagesize 30000
set long 999999999
set longchunksize 999999
set autotrace off
---写法1
SELECT a.dname,b.job,SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY a.dname,b.job;
DNAME JOB SUM_SAL
-------------- --------- ----------
SALES MANAGER 2850
SALES CLERK 950
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
ACCOUNTING CLERK 1300
SALES SALESMAN 5600
RESEARCH MANAGER 2975
RESEARCH ANALYST 6000
RESEARCH CLERK 1900
/*
不错不错,自我陶醉中....
停!先别得意,有人跑来说希望能增加一列总的汇总。
等等,更变态的需求来了,希望能得到不同DNAME的各自汇总!
*/
---写法2(没办法,先想到如下一个办法来实现楼上的变态需求)
set autotrace on
select * from (
SELECT a.dname,b.job,SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY a.dname,b.job
UNION ALL
--实现了部门的小计
SELECT a.dname,NULL, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY a.dname
UNION ALL
--实现了所有部门总的合计
SELECT NULL,NULL, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno)
order by dname;
DNAME JOB SUM_SAL
-------------- --------- ----------
ACCOUNTING CLERK 1300
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
ACCOUNTING 8750
RESEARCH CLERK 1900
RESEARCH MANAGER 2975
RESEARCH ANALYST 6000
RESEARCH 10875
SALES CLERK 950
SALES MANAGER 2850
SALES SALESMAN 5600
SALES 9400
29025
union all 合并笨办法产生的执行计划
-------------------------------------------------------------------------------
Plan hash value: 2979078843
-------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 29 | 812 | 23 (22)| 00:00:01 |
| 1 | SORT ORDER BY | | 29 | 812 | 23 (22)| 00:00:01 |
| 2 | VIEW | | 29 | 812 | 22 (19)| 00:00:01 |
| 3 | UNION-ALL | | | | | |
| 4 | HASH GROUP BY | | 14 | 756 | 8 (25)| 00:00:01 |
|* 5 | HASH JOIN | | 14 | 756 | 7 (15)| 00:00:01 |
| 6 | TABLE ACCESS FULL| DEPT | 4 | 88 | 3 (0)| 00:00:01 |
| 7 | TABLE ACCESS FULL| EMP | 14 | 448 | 3 (0)| 00:00:01 |
| 8 | HASH GROUP BY | | 14 | 672 | 8 (25)| 00:00:01 |
|* 9 | HASH JOIN | | 14 | 672 | 7 (15)| 00:00:01 |
| 10 | TABLE ACCESS FULL| DEPT | 4 | 88 | 3 (0)| 00:00:01 |
| 11 | TABLE ACCESS FULL| EMP | 14 | 364 | 3 (0)| 00:00:01 |
| 12 | SORT AGGREGATE | | 1 | 39 | | |
|* 13 | HASH JOIN | | 14 | 546 | 7 (15)| 00:00:01 |
| 14 | TABLE ACCESS FULL| DEPT | 4 | 52 | 3 (0)| 00:00:01 |
| 15 | TABLE ACCESS FULL| EMP | 14 | 364 | 3 (0)| 00:00:01 |
-------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
5 - access("A"."DEPTNO"="B"."DEPTNO")
9 - access("A"."DEPTNO"="B"."DEPTNO")
13 - access("A"."DEPTNO"="B"."DEPTNO")
统计信息
----------------------------------------------------------
0 recursive calls
0 db block gets
18 consistent gets
0 physical reads
0 redo size
783 bytes sent via SQL*Net to client
416 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed
---写法3(学本领很重要,如果你会rollup神功,性能就能大幅度提升,SQL书写也不麻烦了)
set autotrace on
SELECT a.dname,b.job, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY ROLLUP(a.dname,b.job);
DNAME JOB SUM_SAL
-------------- --------- ----------
SALES CLERK 950
SALES MANAGER 2850
SALES SALESMAN 5600
SALES 9400
RESEARCH CLERK 1900
RESEARCH ANALYST 6000
RESEARCH MANAGER 2975
RESEARCH 10875
ACCOUNTING CLERK 1300
ACCOUNTING MANAGER 2450
ACCOUNTING PRESIDENT 5000
ACCOUNTING 8750
29025
rollup写法产生的执行计划
-----------------------------------------------------------------------------
Plan hash value: 1037965942
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 14 | 756 | 8 (25)| 00:00:01 |
| 1 | SORT GROUP BY ROLLUP| | 14 | 756 | 8 (25)| 00:00:01 |
|* 2 | HASH JOIN | | 14 | 756 | 7 (15)| 00:00:01 |
| 3 | TABLE ACCESS FULL | DEPT | 4 | 88 | 3 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL | EMP | 14 | 448 | 3 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."DEPTNO"="B"."DEPTNO")
统计信息
----------------------------------------------------------
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads
0 redo size
778 bytes sent via SQL*Net to client
416 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
13 rows processed
--在这里应该可以清楚的发现,表的访问次数比union all硬平畴的要少,而且COST和逻辑读也少的多!
---写法4(如果你想再多一个维度,比如再增加雇佣年份的统计,之前union all硬拼凑的方法要崩溃了吧,不过rollup轻松搞定,如下)
SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY ROLLUP(to_char(b.hiredate,'yyyy'),a.dname,b.job);
HIRE DNAME JOB SUM_SAL
---- -------------- --------- ----------
1980 RESEARCH CLERK 800
1980 RESEARCH 800
1980 800
1981 SALES CLERK 950
1981 SALES MANAGER 2850
1981 SALES SALESMAN 5600
1981 SALES 9400
1981 RESEARCH ANALYST 3000
1981 RESEARCH MANAGER 2975
1981 RESEARCH 5975
1981 ACCOUNTING MANAGER 2450
1981 ACCOUNTING PRESIDENT 5000
1981 ACCOUNTING 7450
1981 22825
1982 ACCOUNTING CLERK 1300
1982 ACCOUNTING 1300
1982 1300
1987 RESEARCH CLERK 1100
1987 RESEARCH ANALYST 3000
1987 RESEARCH 4100
1987 4100
29025
执行计划
----------------------------------------------------------------------------
Plan hash value: 1037965942
-----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 14 | 882 | 8 (25)| 00:00:01 |
| 1 | SORT GROUP BY ROLLUP| | 14 | 882 | 8 (25)| 00:00:01 |
|* 2 | HASH JOIN | | 14 | 882 | 7 (15)| 00:00:01 |
| 3 | TABLE ACCESS FULL | DEPT | 4 | 88 | 3 (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL | EMP | 14 | 574 | 3 (0)| 00:00:01 |
-----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."DEPTNO"="B"."DEPTNO")
统计信息
----------------------------------------------------------
0 recursive calls
0 db block gets
6 consistent gets
0 physical reads
0 redo size
1107 bytes sent via SQL*Net to client
427 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
22 rows processed
--看官们注意到了吗,多了一个维度的统计,无论是COST还是逻辑读,都没有增加,够帅!
---写法5 (另外,不止是增加维度,更换维度的次序,对rollup 也是轻而易举的事,如下)
SELECT b.job,a.dname, SUM(b.sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY ROLLUP(b.job,a.dname);
JOB DNAME SUM_SAL
--------- -------------- ----------
CLERK SALES 950
CLERK RESEARCH 1900
CLERK ACCOUNTING 1300
CLERK 4150
ANALYST RESEARCH 6000
ANALYST 6000
MANAGER SALES 2850
MANAGER RESEARCH 2975
MANAGER ACCOUNTING 2450
MANAGER 8275
SALESMAN SALES 5600
SALESMAN 5600
PRESIDENT ACCOUNTING 5000
PRESIDENT 5000
29025
--------------------- 部分ROLLUP分组---------------------------------------
SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job, SUM(sal) sum_sal
FROM dept a,emp b
WHERE a.deptno = b.deptno
GROUP BY to_char(b.hiredate,'yyyy'),a.dname,ROLLUP(b.job);
rolllup巧用的更多相关文章
- [MySQL性能优化系列]巧用索引
1. 普通青年的索引使用方式 假设我们有一个用户表 tb_user,内容如下: name age sex jack 22 男 rose 21 女 tom 20 男 ... ... ... 执行SQL语 ...
- [ACM训练] ACM中巧用文件的输入输出来改写acm程序的输入输出 + ACM中八大输入输出格式
ACM中巧用文件的输入输出来改写acm程序的输入输出 经常有见大神们使用文件来代替ACM程序中的IO,尤其是当程序IO比较复杂时,可以使自己能够更专注于代码的测试,而不是怎样敲输入. C/C++代码中 ...
- TSql 巧用Alt 键
1,查看表的信息 在TSql 编辑器中,选中一个表,如图 点击Alt+F1,就可以查看表的属性定义 2,使用alt批量插入逗号 在Tsql中使用 in 子句,在(value_List)列表中,经常有很 ...
- 前端工程师技能之photoshop巧用系列第三篇——切图篇
× 目录 [1]切图信息 [2]切图步骤 [3]实战 前面的话 前端工程师除了使用photoshop进行测量之外,更重要的是要使用该软件进行切图.本文是photoshop巧用系列的第三篇——切图篇 切 ...
- 前端工程师技能之photoshop巧用系列第二篇——测量篇
× 目录 [1]测量信息 [2]实战 [3]注意事项 前面的话 前端工程师使用photoshop进行的大量工作实际上是测量.本文是photoshop巧用系列第二篇——测量篇 测量信息 在网页制作中需要 ...
- 前端工程师技能之photoshop巧用系列第一篇——准备篇
× 目录 [1]作用 [2]初始化 [3]常用工具[4]快捷键 前面的话 photoshop是前端工程师无法回避的一个软件,这个软件本身很强大,但我们仅仅需要通过这个工具来完成基本的切图工作即可.本文 ...
- 巧用CSS实现分隔线
下面是几种简单实现分隔线的方法,个人比较喜欢第二种,我也给出了最后第五种比较2的写法,请大家拍砖,或者提供其他好的方法. 单个标签实现分隔线: 点此查看实例展示 .demo_line_01{ padd ...
- iOS开发之巧用Block和代理方法结合来传值
好久没写技术博客了,因为996的工作周期已经持续好几个月了.每天晚上回家都没有太多精力学习很多其他的东西,而且很多时候是接着完善工作的项目的模块开发.所以博客停歇了这么久,更新率也低了不少,今天补充一 ...
- jquery 巧用json传参
JavaScript代码,巧用JSON传参数function AddComment(content) { var comment = {}; comment.threadId = $("#s ...
随机推荐
- Word常用定义的变量
unit U_WordConst; interface {*******Word窗体状态************} const wdWindowStateNormal = $00000000; ...
- Oracle 数据表的管理
1.创建表的的表名规则 a.必须已字母开头 b.长度不能超过30 c.不能是Oracle的保留字 d.只能使用如下字符:A-Z.a-z.1-9.#,$等 2.Oracle基本数据类型 2.1 字符型数 ...
- 我的Python升级打怪之路【三】:Python函数
函数 在函数之前,我们一直遵循者:面向过程编程,即:根据业务逻辑从上到下实现功能,开发过程中最常见的就是粘贴复制.代码就没有重复利用率. 例如:有好多的重复的代码 if 条件: 发送指令 接收结果 e ...
- Linux下jdk安装过程
注意:rpm 与软件相关命令 相当于 window 下的软件助手 管理软件 1 查看当前 Linux 系统是否已经安装 java 1)在命令窗口输入,可以查看系统自带的OpenJDK版本信息. jav ...
- WPF的ProgressBar进度条
1. ProgressBar常用属性 1.1. Minimum:进度条的最小值,一般为 0 1.2. Maximum:进度条的最大值,一般为100 或者是 某一个数, 如复制文件时,总文件数等 1. ...
- JNI注册调用完整过程-安卓4.4
在Android系统中,JNI方法是以C/C++语言来实现的,然后编译在一个so文件里面,以我之前的例子为例Android Studio使用JNI,调用之前要加载到当前应用程序的进程的地址空间中: s ...
- Call to a member function assign() on null
Thinkphp: 在子控制器里面写了一个构造函数,如下 //构造函数 public function __construct(){ echo 1; } 结果页面报错了 ----> Call ...
- win7(64)+vs2010+opencv2.3.1配置问题:应用程序无法正常启动0xc000007b
根据:毛星云(浅墨)的[OpenCV入门教程之一] 安装OpenCV:OpenCV 3.0.OpenCV 2.4.8.OpenCV 2.4.9 +VS 开发环境配置 文章链接:http://blog. ...
- Thread 的join方法
package com.cn.test.thread; public class TestJoin extends Thread{ private String name; public TestJo ...
- JavaScript中的attachEvent和addEventListener
attachEvent和addEventListener在前端开发过程中经常性的使用,他们都可以用来绑定脚本事件,取代在html中写obj.onclick=method. 相同点: 它们都是dom对象 ...