LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))
题目描述
给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,询问区间内小于某个值 xx 的前驱(比其小的最大元素)。
输入格式
第一行输入一个数字 nn。
第二行输入 nn 个数字,第 ii 个数字为 a_iai,以空格隔开。
接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。
若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。
若 \mathrm{opt} = 1opt=1,表示询问 [l, r][l,r] 中 cc 的前驱的值(不存在则输出 -1−1)。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例
样例输入
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
样例输出
3
-1
数据范围与提示
对于 100\%100% 的数据,1 \leq n \leq 100000, -2^{31} \leq \mathrm{others}1≤n≤100000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。
代码:
//#6279. 数列分块入门 3-区间加法,查询区间内小于某个值x的前驱(比其小的最大元素)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+; int n,m;
ll a[maxn],b[maxn],pos[maxn],tag[maxn]; void rechange(int x)
{
for(int i=(x-)*m+;i<=min(x*m,n);i++){
b[i]=a[i];
}
sort(b+(x-)*m+,b+min(x*m,n)+);
} void update(int l,int r,ll c)
{
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++)
a[i]+=c;
rechange(pos[l]);
}
else{
for(int i=l;i<=pos[l]*m;i++)
a[i]+=c;
rechange(pos[l]);
for(int i=pos[l]+;i<=pos[r]-;i++)
tag[i]+=c;
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]+=c;
rechange(pos[r]);
}
} ll query(int l,int r,ll c)
{
ll ans=-;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
for(int i=pos[l]+;i<=pos[r]-;i++){
int cnt=c-tag[i];
int ret=lower_bound(b+(i-)*m+,b+i*m+,cnt)-b-;
//cout<<ret<<" "<<(i-1)*m<<endl;
if(ret!=(i-)*m)
ans=max(ans,b[ret]+tag[i]);
}
for(int i=(pos[r]-)*m+;i<=r;i++){
if(a[i]+tag[pos[r]]<c){
ans=max(ans,a[i]+tag[pos[r]]);
}
}
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
pos[i]=(i-)/m+;
}
for(int i=;i<=m+;i++)
sort(b+(i-)*m+,b+min(i*m,n)+);
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%lld\n",query(l,r,c));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 2 7 5 -1
4
4
-1
6
4
-1
4
*/
LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))的更多相关文章
- #6279. 数列分块入门 3(询问区间内小于某个值 xx 的前驱(比其小的最大元素))
题目链接:https://loj.ac/problem/6279 题目大意:中文题目 具体思路:按照上一个题的模板改就行了,但是注意在整块查找的时候的下标问题. AC代码: #include<b ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LOJ-6279-数列分块入门3(分块, 二分)
链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...
- LOJ-6278-数列分块入门2(分块)
链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LOJ-6277-数列分块入门1(分块)
链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...
- 牛客练习赛52 B题【树状数组维护区间和{查询区间和,如果区间元素重复出现则计数一次}】补题ing
[题目] 查询区间和,如果区间元素重复出现则计数一次. 链接:https://ac.nowcoder.com/acm/contest/1084/B [题解] 将询问按r排序,维护每个数最后出现的位置, ...
- LOJ 6279 数列分块入门3
嗯... 题目链接:https://loj.ac/problem/6279 这道题在分块的基础上用vc数组记录,然后最后分三块,两边暴力枚举找前驱,中间lower_bound找前驱. AC代码: #i ...
随机推荐
- ZJOI2002 昂贵的聘礼
题目描述 Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请 ...
- mvc BundleConfig实现对Css、Js压缩打包加载
Bundle不是.net Framework框架中的一员,使用Bundle首先要先添加引用,如下: nuget包管理--程序包管理控制台--Install-Package Microsoft.AspN ...
- 【BZOJ】1486 [HNOI2009]最小圈
[算法]二分+spfa [题解]据说这个叫分数规划? 0-1分数规划 二分答案a,则对于任意的环有w/k≤a即w-ak≤0,若满足条件则a变小,否则a变大. 因为w=w1+w2+...+wk,所以变形 ...
- Html5学习1(Html属性、Html CSS:)
Html属性 1.Html要求使用小写属性. Html标题 1.确保将Html标题标签只用于标题.不要仅仅为了生成粗体或大号的文本而使用标题. 2.<hr>标签在Html页面中创建水平线, ...
- Achain 钱包部署
官网 GIT: [ Achain_linux ] 基础环境 OS: CentOS, Ubuntu Achain: 官网 [ release 最新版本 ] 安装 Achain 钱包 下载 CentOS ...
- hdu 1556(线段树之扫描线)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1556 Color the ball Time Limit: 9000/3000 MS (Java/Ot ...
- It is possible that this issue is resolved by uninstalling an existi
使用真机连接Android Studio测试时出现这样的错误: 解决方法: 设置Android Studio 中Instant Run中的选项为不选中 根据以下路径,找到Instant Run中的选项 ...
- XML 约束 (DTD和 schema)
book.DTD 如下: <?xml version="1.0" encoding="UTF-8" ?> <schema xmlns=&quo ...
- nowcoder 提高第六场A题
Solution 60分 因为所有的字母要么全相同要么全不同, 所以两条路径比较字典序只需要比较第一条边就可以, 于是建反图, 在反图上按拓扑序转移就可以. 因为有环, 所以拓扑完入度还是不为0的点答 ...
- NOIP 2013 day1
tags: 模拟 快速幂 逆序对 树状数组 归并排序 最小生成树 lca 倍增 categories: 信息学竞赛 总结 tex live 2017.iso 转圈游戏 火柴排队 货车运输 转圈游戏 s ...