LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))
题目描述
给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,询问区间内小于某个值 xx 的前驱(比其小的最大元素)。
输入格式
第一行输入一个数字 nn。
第二行输入 nn 个数字,第 ii 个数字为 a_iai,以空格隔开。
接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。
若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。
若 \mathrm{opt} = 1opt=1,表示询问 [l, r][l,r] 中 cc 的前驱的值(不存在则输出 -1−1)。
输出格式
对于每次询问,输出一行一个数字表示答案。
样例
样例输入
4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4
样例输出
3
-1
数据范围与提示
对于 100\%100% 的数据,1 \leq n \leq 100000, -2^{31} \leq \mathrm{others}1≤n≤100000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。
代码:
//#6279. 数列分块入门 3-区间加法,查询区间内小于某个值x的前驱(比其小的最大元素)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+; int n,m;
ll a[maxn],b[maxn],pos[maxn],tag[maxn]; void rechange(int x)
{
for(int i=(x-)*m+;i<=min(x*m,n);i++){
b[i]=a[i];
}
sort(b+(x-)*m+,b+min(x*m,n)+);
} void update(int l,int r,ll c)
{
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++)
a[i]+=c;
rechange(pos[l]);
}
else{
for(int i=l;i<=pos[l]*m;i++)
a[i]+=c;
rechange(pos[l]);
for(int i=pos[l]+;i<=pos[r]-;i++)
tag[i]+=c;
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]+=c;
rechange(pos[r]);
}
} ll query(int l,int r,ll c)
{
ll ans=-;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
for(int i=pos[l]+;i<=pos[r]-;i++){
int cnt=c-tag[i];
int ret=lower_bound(b+(i-)*m+,b+i*m+,cnt)-b-;
//cout<<ret<<" "<<(i-1)*m<<endl;
if(ret!=(i-)*m)
ans=max(ans,b[ret]+tag[i]);
}
for(int i=(pos[r]-)*m+;i<=r;i++){
if(a[i]+tag[pos[r]]<c){
ans=max(ans,a[i]+tag[pos[r]]);
}
}
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
pos[i]=(i-)/m+;
}
for(int i=;i<=m+;i++)
sort(b+(i-)*m+,b+min(i*m,n)+);
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%lld\n",query(l,r,c));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 2 7 5 -1
4
4
-1
6
4
-1
4
*/
LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))的更多相关文章
- #6279. 数列分块入门 3(询问区间内小于某个值 xx 的前驱(比其小的最大元素))
题目链接:https://loj.ac/problem/6279 题目大意:中文题目 具体思路:按照上一个题的模板改就行了,但是注意在整块查找的时候的下标问题. AC代码: #include<b ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LOJ-6279-数列分块入门3(分块, 二分)
链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...
- LOJ-6278-数列分块入门2(分块)
链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LOJ-6277-数列分块入门1(分块)
链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...
- 牛客练习赛52 B题【树状数组维护区间和{查询区间和,如果区间元素重复出现则计数一次}】补题ing
[题目] 查询区间和,如果区间元素重复出现则计数一次. 链接:https://ac.nowcoder.com/acm/contest/1084/B [题解] 将询问按r排序,维护每个数最后出现的位置, ...
- LOJ 6279 数列分块入门3
嗯... 题目链接:https://loj.ac/problem/6279 这道题在分块的基础上用vc数组记录,然后最后分三块,两边暴力枚举找前驱,中间lower_bound找前驱. AC代码: #i ...
随机推荐
- linux下bash脚本语法
1.shell中的变量定义和引用(1)变量定义和初始化.shell是弱类型语言(语言中的变量如果有明确的类型则属于强类型语言:变量没有明确类型就是弱类型语言),和C语言不同.在shell编程中定义变量 ...
- 1-shell学习(bash)
1.为什么需要学习shell: (1)通用性,基本上所有的linux机器都会支持 (2)文字传输操作更快 (3)以后的系统管理需要使用 2.知识点: (1)变量相关:
- UVA 1645 Count
https://vjudge.net/problem/UVA-1645 题意:有多少个n个节点的有根树,每个深度中所有节点的子节点数相同 dp[i] 节点数为i时的答案 除去根节点还有i-1个点,如果 ...
- python基础---输入输出
1.输入字符串. name=input() or name=input('please input a string') 这样可以接收一个字符串,包括空格,都可以输入.只有回车不接受,作为结束符, ...
- mysql binlog日志手动清除
purge binary logs to 'mysql-bin.000050'; set global expire_logs_days=7; flush logs;
- Piggy-Bank(多重背包+一维和二维通过方式)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题面: Problem Description Before ACM can do anythi ...
- javascript 事件知识集锦
1.事件委托极其应用 转载的链接: http://www.webhek.com/event-delegate/#comments 2. 解析javascript事件机制 转载链接: http: ...
- sql server 在作业中 远程连接 oracle mysql sqlserver 数据库
在作业中执行远程连接时,需要对本次作业执行的步骤指定特定用户 并且该用户必须拥有所需操作数据库的db_owner角色,和服务器sysadmin角色 在作业中执行远程连接时,需要做登录映射 下面是我在作 ...
- mysql执行load_fle返回NULL的解决方法
mysql 版本: 5.7.18 问题: 在执行mysql 函数load_file时,该函数将加载指定文件的内容,存储至相应字段.如: SELECT LOAD_FILE("D:\aa.txt ...
- 【Linux学习】nohup后台运行程序以及输出重定向
Linux有两种命令使程序后台运行 第一种:支持后台运行,但是关闭终端的话,程序也会停止 command & 第二种:支持后台运行,关闭终端后,程序也会继续运行 nohup command & ...