AtCoder:C - Nuske vs Phantom Thnook
C - Nuske vs Phantom Thnook
https://agc015.contest.atcoder.jp/tasks/agc015_c
题意:
n*m的网格,每个格子可能是蓝色, 可能是白色,问一个子矩阵内,蓝色方格的联通块数。
输入的数据中,保证蓝色点之间只有一条路径(或者没有)。
分析:
因为任意蓝点之间只有一条路径,如果在相邻的蓝点之间连一条边后,也就是整张图没有环,在一个森林内,求一个些点构成的树的数量。
结论:联通块数=总节点数-边数。
因为,没加入一条边,会减少一个联通块,(即减少一棵树),加入了n条,就减去了n个。
代码:
#include<cstdio>
#include<iostream>
#include<cctype>
using namespace std; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
char s[N][N];
int s1[N][N], s2[N][N], s3[N][N]; int main() {
int n = read(), m = read(), Q = read();
for (int i=; i<=n; ++i) scanf("%s",s[i] + );
for (int i=; i<=n; ++i) {
for (int j=; j<=m; ++j) {
s1[i][j] = s1[i - ][j] + s1[i][j - ] - s1[i - ][j - ];
s2[i][j] = s2[i - ][j] + s2[i][j - ] - s2[i - ][j - ];
s3[i][j] = s3[i - ][j] + s3[i][j - ] - s3[i - ][j - ];
if (s[i][j] == '') {
s1[i][j] ++;
if (s[i][j] == s[i - ][j]) s2[i][j] ++;
if (s[i][j] == s[i][j - ]) s3[i][j] ++;
}
}
}
while (Q--) {
int a1 = read(), b1 = read(), a2 = read(), b2 = read();
int t1 = s1[a2][b2] - s1[a2][b1 - ] - s1[a1 - ][b2] + s1[a1 - ][b1 - ];
int t2 = s2[a2][b2] - s2[a2][b1 - ] - s2[a1][b2] + s2[a1][b1 - ];
int t3 = s3[a2][b2] - s3[a2][b1] - s3[a1 - ][b2] + s3[a1 - ][b1];
printf("%d\n",t1 - t2 - t3);
}
return ;
}
AtCoder:C - Nuske vs Phantom Thnook的更多相关文章
- Nuske vs Phantom Thnook
Nuske vs Phantom Thnook Time limit : 4sec / Memory limit : 256MB Score : 700 points Problem Statemen ...
- AtCoder Grand Contest 015 C - Nuske vs Phantom Thnook
题目传送门:https://agc015.contest.atcoder.jp/tasks/agc015_c 题目大意: 现有一个\(N×M\)的矩阵\(S\),若\(S_{i,j}=1\),则该处为 ...
- Atcoder C - Nuske vs Phantom Thnook(递推+思维)
题目链接:http://agc015.contest.atcoder.jp/tasks/agc015_c 题意:给一个n*m的格,蓝色的组成路径保证不成环,q个询问,计算指定矩形区域内蓝色连通块的个数 ...
- [agc015c]nuske vs phantom thnook
题意: 有一个n*m的网格图,每个格子是蓝色或白色.四相邻的两个格子连一条边,保证蓝格子构成一个森林. 有q组询问,每次询问给出一个矩形,问矩形内蓝格子组成的联通块个数. $1\leq n,m\leq ...
- AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)
题目链接 闻本题有格子,且何谓格子也 \(Description\) 给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一. \(Q\)次询问.每次询问一个 ...
- AGC015 C Nuske vs Phantom Thnook(前缀和)
题意 题目链接 给出一张$n \times m$的网格,其中$1$为蓝点,$2$为白点. $Q$次询问,每次询问一个子矩阵内蓝点形成的联通块的数量 保证任意联通块内的任意蓝点之间均只有一条路径可达 S ...
- C - Nuske vs Phantom Thnook
题意:n*m矩阵,n,m<=2e3,矩阵中的1能走到相邻4个1上,0代表障碍,若两个1联通 则只有一条路径 q个询问,q<=2e5,每次询问一个子矩阵中有多少个连通分量? 同一个连通分量中 ...
- [NOIP2019模拟赛][AT2381] Nuske vs Phantom Thnook
题目链接 评测姬好快啊(港记号?)暴力40pts变成60pts 因为题目说了保证蓝色点两两之间只有一条路径,所以肯定组成了一棵树,而对于每次询问的x1,y1,x2,y2的子矩阵中就存在着一个森林 不难 ...
- 「AT2381 [AGC015C] Nuske vs Phantom Thnook」
题目大意 给出一个01矩阵,这个矩阵有一个特殊的性质: 对于任意两个 \(1\) 之间最多只有 \(1\) 条由 \(1\) 构成的路径.每次询问给出一个矩形范围,查询在这个范围内的联通快个数. 分析 ...
随机推荐
- 如何写Paper
如何写文章,如何写好文章,是每一个科研工作者想弄懂或者已经弄懂了的问题.剑桥大学某研究人员分享了他的写作思路. 我从该视频中学到了以下几点经验: 正确的顺序是:Idea——>Write——> ...
- 阅读HandlerInterceptor接口源码的理解
一.阅读接口类注释 我先理解的方法,方法都看懂了类注释自然而然明白了.所以此处略. 二.阅读preHandle()方法注释 Intercept the execution of a handler. ...
- Unity3D十款最火的的插件推荐
作为当前最主流的3D游戏引擎之中的一个.Unity拥有大量第三方插件和工具帮助开发人员提升工作效率. 我们摘选了十款最受欢迎的工具推荐给大家.类别包括2D开发.UI设计.原型制作.着色.特效等,涉及了 ...
- BZOJ2756:[SCOI2012]奇怪的游戏(最大流,二分)
Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...
- 苹果手机(ios系统)蓝牙BLE的一些特点
摘自<BluetoothDesignGuidelines.pdf>文档 1. pairing: 苹果手机无法主动发起SMP配对流程,可通过以下两种方式发起配对流程: (1)从端主动发起配对 ...
- Linux学习总结(三)之 putty,xshell远程连接及密钥认证篇
一:putty 下载 1:认准两个地方 a. Download putty b. chiark greenend 2:下载32位的zip包,这是一个工具包合集,不单是一个终端工具 二:putty设置 ...
- canvas制作随机验证码
看到人家彩色背景的验证码想测试一下: 创建html代码: <canvas id="myCanvas" width="200" height="1 ...
- mysql使用Navicat 导出和导入数据库
系统环境: Win7 x64软件准备:Navicat Premium_11.2.7简体中文版下载网址:http://www.cr173.com/soft/419023.html 现在我就向大家介绍 m ...
- peripheralStateNotificationCB
/********************************************************************* * @fn peripheralStateNotifica ...
- sharepoint2016安装OOS,OOS场负载均衡
Office Online Server is the successor to Office Web Apps Server. It may be connected to SharePoint, ...