【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣
Fleury算法看这里 http://hihocoder.com/problemset/problem/1181
把每个点看成边,每个横纵坐标看成一个点,得到一个无向图.
如果新图中每个点的度都是偶数,那么就是一个欧拉图,对该图跑一遍欧拉回路,对走过的边轮流染色,就可以保证每个点所连的边的红蓝颜色相等.
如果存在度数为奇数的点,新建两个点a和b.把横坐标的度数为奇数的点和a连边,把纵坐标为奇数的点和b连边,这样最多只有a和b的度数为奇数,可以跑欧拉路径.
注意Fleury算法的时候,要及时把访问过的边从图中删去(真的删去而不是打标记),否则重复访问会导致复杂度飙升。
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
struct Edge{
int v,id;
};
vector<Edge>G[400010];
int n,S,T;
bool anss[200010],pen,vis[600010];
inline void dfs(int U){
while(!G[U].empty()){
Edge e=G[U].back();
G[U].pop_back();
if(!vis[e.id]){
vis[e.id]=1;
dfs(e.v);
if(e.id<=n){
anss[e.id]=pen;
pen^=1;
}
}
}
}
int main(){
// freopen("c.in","r",stdin);
int x,y;
scanf("%d",&n);
S=400001; T=400002;
for(int i=1;i<=n;++i){
scanf("%d%d",&x,&y);
G[x].push_back((Edge){y+200000,i});
G[y+200000].push_back((Edge){x,i});
}
int cnt=n;
for(int i=1;i<=200000;++i){
if(G[i].size()&1){
G[S].push_back((Edge){i,++cnt});
G[i].push_back((Edge){S,cnt});
}
}
for(int i=200001;i<=400000;++i){
if(G[i].size()&1){
G[i].push_back((Edge){T,++cnt});
G[T].push_back((Edge){i,cnt});
}
}
if(G[S].size()&1){
dfs(S);
}
if(!G[T].empty()){
dfs(T);
}
for(int i=1;i<=200000;++i){
if(!G[i].empty()){
dfs(i);
}
}
for(int i=1;i<=n;++i){
putchar(anss[i] ? 'r' : 'b');
}
puts("");
return 0;
}
【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣的更多相关文章
- 【欧拉回路】【Fleury算法】CDOJ1642 老当益壮, 宁移白首之心?
题意: 构造一个01串,使得满足以下条件: 1. 环状(即首尾相连) 2. 每一位取值为0或1 3. 长度是2^n 4. 对于每个(2^n个)位置,从其开始沿逆时针方向的连续的n位01串(包括自己) ...
- Fleury算法 求欧拉回路
Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...
- 欧拉回路&欧拉路径学习笔记
基础性质(用来判定): 1.无向图欧拉回路没有奇数点 (有向图所有点入度等于出度) 2.无向图欧拉路径只有两个奇数点 (有向图有一个顶点入度比出度大1,有一个顶点出度比入度大1,其他的全相等) 3.图 ...
- hiho欧拉路·二 --------- Fleury算法求欧拉路径
hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...
- Fleury算法求欧拉路径
分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...
- HihoCoder1181欧拉路(Fleury算法求欧拉路径)
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
- 欧拉回路 & 欧拉路径
欧拉路径 & 欧拉回路 概念 欧拉路径: 如果图 G 种的一条路径包括所有的边,且仅通过一次的路径. 欧拉回路: 能回到起点的欧拉路径. 混合图: 既有无向边又有无向边的图. 判定 无向图 一 ...
- UVA10054-The Necklace(无向图欧拉回路——套圈算法)
Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...
- The Best Path HDU - 5883(欧拉回路 && 欧拉路径)
The Best Path Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
随机推荐
- C#读取txt文件时中文乱码
解决办法 使用GB2312中文字符集 StreamReader reader = new StreamReader(txtUrl, Encoding.GetEncoding("gb2312& ...
- fragment+tabhost与viewpager
学到哪里写到哪里吧 A.viewpager a.用V4包中的fragment,activity继承FragmentActivity b.布局中加入<android.support.v4.view ...
- python进行机器学习(二)之特征选择
毫无疑问,解决一个问题最重要的是恰当选取特征.甚至创造特征的能力,这叫做特征选取和特征工程.对于特征选取工作,我个人认为分为两个方面: 1)利用python中已有的算法进行特征选取. 2)人为分析各个 ...
- HashMap 、LinkedHashMap、HashTable、TreeMap 和 Properties 的区别
HashMap 1.线程不安全: 2.允许null value 和 null key: 3.访问效率比较高: 4.Java1.2引进的Map接口的一个实现: 5.轻量级: 6.根据键的HashCode ...
- Django 1.10中文文档-第一个应用Part5-测试
本教程上接教程Part4. 前面已经建立一个网页投票应用,现在将为它创建一些自动化测试. 自动化测试简介 什么是自动化测试 测试是检查你的代码是否正常运行的行为.测试也分为不同的级别.有些测试可能是用 ...
- 看jquery3.3.1学js类型判断的技巧
需要预习:call , typeof, js数据类型 1. isFunction中typeof的不靠谱 源码: var isFunction = function isFunction( obj ) ...
- sicily 1020. Big Integer
Description Long long ago, there was a super computer that could deal with VeryLongIntegers(no VeryL ...
- MySQL的sql_mode解析与设置
https://blog.csdn.net/hhq163/article/details/54140286 https://blog.csdn.net/ccccalculator/article/de ...
- mycncart自定义主题
本文是自己通过其他主题,自学的,如果有什么问题,可以提出建议? 参考资料:opencart官网 www.opencart.com 或 mycncart的官网上的一些教程 www.mycncart.c ...
- linux命令(10):ps命令
1.查看mysql进程数: ps -ef | grep "mysql" | grep -v "grep" | wc –l 2.监控CPU状态:ps –au 3. ...