【数论】nefu119 组合素数
算组合数中的素因子p的个数,基本同这题
http://www.cnblogs.com/autsky-jadek/p/6592194.html
#include<cstdio>
using namespace std;
typedef long long ll;
int calc(int n,int p){
int res=0;
ll t=p;
while(t<=(ll)n){
res+=(n/(int)t);
t*=(ll)p;
}
return res;
}
int T,n,m;
int main(){
// freopen("b.in","r",stdin);
scanf("%d",&T);
for(;T;--T){
scanf("%d%d",&n,&m);
printf("%d\n",calc(2*n,m)-2*calc(n,m));
}
return 0;
}
【数论】nefu119 组合素数的更多相关文章
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- [自用]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...
- 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)
题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...
- 2018.10.26 poj3421X-factor Chains(数论+排列组合)
传送门 排列组合入门题. 令X=p1a1p2a2..pkakX=p_1^{a_1}p_2^{a_2}..p_k^{a_k}X=p1a1p2a2..pkak 那么答案1就等于∑i=1kai\ ...
- NEFU 118 - n!后面有多少个0 & NEFU 119 - 组合素数 - [n!的素因子分解]
首先给出一个性质: n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + …… 举例证明: 例如我们有10!,我们要求它的素因子分解中2的幂: ...
- 【数论】【素数判定】CODEVS 2851 菜菜买气球
素数判定模板. #include<cstdio> #include<map> using namespace std; ],ans=-,l,r,n,sum[]; bool is ...
- hdu 2582(数论相关定理+素数筛选+整数分解)
f(n) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- codeforces 615 D. Multipliers (数论 + 小费马定理 + 素数)
题目链接: codeforces 615 D. Multipliers 题目描述: 给出n个素数,这n个素数的乘积等于s,问p的所有因子相乘等于多少? 解题思路: 需要求出每一个素数的贡献值,设定在这 ...
- UVA 1415 - Gauss Prime(数论,高斯素数拓展)
UVA 1415 - Gauss Prime 题目链接 题意:给定a + bi,推断是否是高斯素数,i = sqrt(-2). 思路:普通的高斯素数i = sqrt(-1),推断方法为: 1.假设a或 ...
随机推荐
- SpringCloud Feign重试详解
摘要: 今天在生产环境发生了数据库进程卡死的现象,除了sql因为全量更新,没加索引的原因,最主要还是我们的接口的服务器端接口出现问题了.忽视了更新接口的幂等性,以及调用方feign client的重试 ...
- mybatis 显示 sql日志
#项目日志logging.level.com.zhang.com=debug #mybatis sql相关日志显示logging.level.org.mybatis.spring=DEBUGloggi ...
- ubuntu下调整cpu频率
环境:ubuntu15.10 查看内核支持的cpu策略 cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors 比如我 ...
- linux c 执行新程序
学习进程时,linu c上说新开的进程一般要执行另外一个程序,同时与父进程执行同一个程序没有意义 如下是如何执行一个新的程序 使用exec函数簇 exec函数簇包含如下函数
- 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel
准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...
- 关于c++的string的operator =
在 c++ primer 5 中在说到string的章节里面有这样一句话: string s5 = "hiya"; // copy initialization 也就是说,这里说上 ...
- MD5加密学习
MD5(Message Digest --消息摘要算法)算法是一种散列(hash)算法(摘要算法,指纹算法),不是一种加密算法(易错),任何长度的任意内容都可以用MD5计算出散列值.主要作用是[验明“ ...
- Oralce Spatial
1.建立数据库连接 create public database link ytlink connect to hightop identified by hightop using '(DESCRI ...
- mybatis 联结查询
一.查询 员工(tbl_employee)时,关联 查询出 员工对于的部门信息 (tab1_dept),一对一查询,或者多对一查询 适用 emp bean里面 包含 部门bean dept属性对象 1 ...
- Python 面向对象的三大特性
面向对象的三大特性:继承,封装,多态 什么时候用封装: 同一种功能的时候, 譬如:把一部分数据或方法,封装到同一个类的中 PS:在构造方法中,原始数据中....