Count the string

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9588    Accepted Submission(s): 4480

Problem Description
It is well known that AekdyCoin is good at string problems as well as number theory problems. When given a string s, we can write down all the non-empty prefixes of this string. For example:
s: "abab"
The prefixes are: "a", "ab", "aba", "abab"
For each prefix, we can count the times it matches in s. So we can see that prefix "a" matches twice, "ab" matches twice too, "aba" matches once, and "abab" matches once. Now you are asked to calculate the sum of the match times for all the prefixes. For "abab", it is 2 + 2 + 1 + 1 = 6.
The answer may be very large, so output the answer mod 10007.
 
Input
The first line is a single integer T, indicating the number of test cases.
For each case, the first line is an integer n (1 <= n <= 200000), which is the length of string s. A line follows giving the string s. The characters in the strings are all lower-case letters.
 
Output
For each case, output only one number: the sum of the match times for all the prefixes of s mod 10007.
 
Sample Input
1
4
abab
 
Sample Output
6
 
Author
foreverlin@HNU
题意:
求长度为n的字符串中每个前缀在这条字符串中出现的次数的总和

代码:

//dp[i]表示字符串s[1~i]中出现了多少个以s[i]为结尾的前缀,又有f数组的特性,如果
//f[i]=j则s[1~j]=s[i-j+1~i]得出状态转移方程dp[i]=dp[f[i]]+1;
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int mod=;
char P[];
int f[],dp[];
int main()
{
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
scanf("%s",P);
f[]=f[]=;
for(int i=;i<n;i++){
int j=f[i];
while(j&&P[i]!=P[j]) j=f[j];
f[i+]=(P[i]==P[j]?j+:);
}
dp[]=;
int sum=;
for(int i=;i<=n;i++){
dp[i]=dp[f[i]]+;
sum+=dp[i]%mod;
sum%=mod;
}
printf("%d\n",sum);
}
return ;
}

HDU3336 KMP+DP的更多相关文章

  1. hdu3336 KMP + DP 前缀数组出现的次数

    题意:       给你一个串,问你他的所有前缀子串在本串中的出现次数,注释:abc的前缀子串是 a ab abc; 思路:      还是利用了next数组,先对子串求出next数组,再开一个数组d ...

  2. [HDOJ5763]Another Meaning(KMP, DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5763 题意:给定两个字符串a和b,其中a中的字符串如果含有子串b,那么那部分可以被替换成*.问有多少种 ...

  3. POJ 3336 Count the string (KMP+DP,好题)

    参考连接: KMP+DP: http://www.cnblogs.com/yuelingzhi/archive/2011/08/03/2126346.html 另外给出一个没用dp做的:http:// ...

  4. 【KMP+DP】Count the string

    KMP算法的综合练习 DP很久没写搞了半天才明白.本题结合Next[]的意义以及动态规划考察对KMP算法的掌握. Problem Description It is well known that A ...

  5. codeforces432D Prefixes and Suffixes(kmp+dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Prefixes and Suffixes You have a strin ...

  6. [kmp+dp] hdu 4628 Pieces

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4622 Reincarnation Time Limit: 6000/3000 MS (Java/Ot ...

  7. 洛谷P3193 [HNOI2008]GT考试 kmp+dp

    正解:kmp+dp+矩阵优化 解题报告: 传送门! 啊刚说想做矩阵优化dp的字符串题就找到辣QwQ虽然不是AC自动机的但都差不多嘛QwQ 首先显然可以想到一个dp式?就f[i][j]:凑出i位了,在s ...

  8. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  9. HDU 6153 A Secret ( KMP&&DP || 拓展KMP )

    题意 : 给出两个字符串,现在需要求一个和sum,考虑第二个字符串的所有后缀,每个后缀对于这个sum的贡献是这个后缀在第一个字符串出现的次数*后缀的长度,最后输出的答案应当是 sum % 1e9+7 ...

随机推荐

  1. NodeJs学习笔记01-你好Node

    如果你对NodeJs略知一二,不禁会感叹,使用JS的语法和代码习惯就能开发一个网站的后台,实现复杂的数据交互,牛! 对于学习java和php就夹生的小码农来说,简直就是靡靡之音呐~~~ 今晚带着忐忑的 ...

  2. 使用Python客户端(redis-py)连接Redis--华为云DCS for Redis使用经验

    使用Python连接Redis,需要先安装Python以及redis-py,以CentOS为例,介绍redis-py的客户端环境搭建. 第0步:准备工作 华为云上购买1台弹性云服务器ECS(我选了Ce ...

  3. 查找 二叉树中 k1 到 k2区间的节点

    vector<int> res; int key1, key2; void traverse(TreeNode * root){//采用前序遍历 if(root == NULL) retu ...

  4. 一些容易记混的c++相关知识点

    一些容易记混的c++相关知识. 截图自:<王道程序员面试宝典>

  5. 实用的ES6特性

    1. 函数参数默认值 不使用ES6 为函数的参数设置默认值: function foo(height, color) { var height = height || 50; var color = ...

  6. c#数据库乱码

    1.sql连接语句加charset=utf8: 2.不要使用odbcConnection. 在由utf8改为latin1时候,需要修改的地方: 1.连接数据库语句中的charset: 2.在sql语句 ...

  7. BluetoothAdapter解析

    这篇文章将会详细解析BluetoothAdapter的详细api, 包括隐藏方法, 每个常量含义. 一 BluetoothAdapter简介 1.继承关系 该类仅继承了Object类; 2.该类作用 ...

  8. iOS开发跳转指定页面

    for (UIViewController *VC in self.navigationController.viewControllers) { if ([VC isKindOfClass:[Car ...

  9. OSG数学基础:坐标系统

    坐标系是一个精确定位对象位置的框架,所有的图形变换都是基于一定的坐标系进行的. 三维坐标系总体上可以分为两大类:左手坐标系和右手坐标系. 常用的坐标系:世界坐标系.物体坐标系和摄像机坐标系. 世界坐标 ...

  10. js移动端滑块验证解锁组件

    本文修改自PC端的js滑块验证组件,PC端使用的是onmousedown,onmouseup,nomousemove.原文找不到了,也是博客园文章,在此感谢广大网友的生产力吧. 说下对插件和组件的理解 ...