LightOJ 1161 - Extreme GCD 容斥
**题意:**给你n个数[4,10000],问在其中任意选四个其GCD值为1的情况有几种。
**思路:**GCD为1的情况很简单 即各个数没有相同的质因数,所以求所有出现过的质因数次数再容斥一下……
很可惜是错的,因为完全有可能某四个数有两个公共质因数,所以还是使用普通的因子分解
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e4+20;
LL mar[N];
LL ans[N];
LL C4(LL n)//组合数4的函数
{
return n*(n-1)*(n-2)*(n-3)/24;
}
void rec(int n)//分解因子 并记录个数
{
for(int i = 1; i*i <= n; i++)
{
if(n % i == 0)
{
mar[i]++;
if(n / i != i)
mar[n/i]++;
}
}
}
int main()
{
// prime();
int T;
int cnt = 0;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
MMF(mar);
for(int i = 0; i < n; i++)
{
int t;
scanf("%d", &t);
rec(t);
}
for (int i = 10000; i >= 1; --i) {
ans[i] = C4(mar[i]);
for (int j = 2 * i; j <= 10000; j += i)
{
ans[i] -= ans[j];
}
}
printf("Case %d: %lld\n", ++cnt, ans[1]);
}
return 0;
}
//刚开始想找质因数排列组合 WA后一想 可能存在这种情况:某4个数的 相同质因数 有两种,这样后的容斥情况重复了
LightOJ 1161 - Extreme GCD 容斥的更多相关文章
- 1161 - Extreme GCD
1161 - Extreme GCD PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB All ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 容斥+欧拉函数
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...
- HDU 5656 CA Loves GCD (容斥)
题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少. 析:枚举gcd,然后求每个 ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- bzoj2005 能量采集 gcd 容斥
ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...
- 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)
GCD Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissio ...
- HDU - 1695 GCD (容斥+枚举)
题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...
- GCD HDU - 1695 (欧拉 + 容斥)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- 20145214 《Java程序设计》第1周学习总结
20145214 <Java程序设计>第1周学习总结 教材学习内容总结 第一章 了解了Java的诞生和版本演进的历史,目前的最新版本是Java SE8. java的三大平台分别是Java ...
- Android中的回调Callback
回调就是外部设置一个方法给一个对象, 这个对象可以执行外部设置的方法, 通常这个方法是定义在接口中的抽象方法, 外部设置的时候直接设置这个接口对象即可. 例如给安卓添加按钮点击事件, 我们创建了OnC ...
- Internet Technologe
Store and Forward Networking Efficient Message Transmission:Packet Switching(分组交换) Challenge: in a s ...
- # 团队作业MD
队员姓名与学号 051501124 王彬(组长) 111500206 赵畅 031602215 胡展瑞 031602320 李恒达 031602131 佘岳昕 031602431 王源 0316022 ...
- String 和 CharSequence 关系与区别
String 继承于CharSequence,也就是说String也是CharSequence类型. CharSequence是一个接口,它只包括length(), charAt(int index) ...
- redis切换数据库的方法【jedis】
package com.test; import redis.clients.jedis.Jedis; public class readredis { public static void main ...
- PAT 甲级 1128 N Queens Puzzle
https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...
- 【linux】- nohup 和 &
&的意思是在后台运行, 什么意思呢? 意思是说,当你在执行 ./a.out & 的时候,即使你用ctrl C,那么a.out照样运行(因为对SIGINT信号免疫).但是要注意,如果你直 ...
- Maven 生命周期 和插件
1.3 生命周期1.3.1 什么是生命周期? Maven生命周期就是为了对所有的构建过程进行抽象和统一.包括项目清理.初始化.编译.打包.测试.部署等几乎所有构建步骤. 生命周期可以理解为构建工程的步 ...
- JAVA IDE IntelliJ IDEA使用简介(三)—之你不能忘记的快捷键
IDEA有许多的快捷键来帮助你更便捷的编写代码,以下列出的快捷键(默认情况下,你还没有定制你的快捷键)是工作中经常需要使用到的,请牢记 快捷键 描述 备注 Alt+F1 视图切换 切换当前工作文件的视 ...