**题意:**给你n个数[4,10000],问在其中任意选四个其GCD值为1的情况有几种。
**思路:**GCD为1的情况很简单 即各个数没有相同的质因数,所以求所有出现过的质因数次数再容斥一下……
很可惜是错的,因为完全有可能某四个数有两个公共质因数,所以还是使用普通的因子分解

#include <stdio.h>

#include <iostream>

#include <string.h>

#include <algorithm>

#include <utility>

#include <vector>

#include <map>

#include <set>

#include <string>

#include <stack>

#include <queue>

#define LL long long

#define MMF(x) memset((x),0,sizeof(x))

#define MMI(x) memset((x), INF, sizeof(x))

using namespace std;



const int INF = 0x3f3f3f3f;

const int N = 1e4+20;



LL mar[N];

LL ans[N];

LL C4(LL n)//组合数4的函数

{

return n*(n-1)*(n-2)*(n-3)/24;

}

void rec(int n)//分解因子 并记录个数

{

for(int i = 1; i*i <= n; i++)

{

if(n % i == 0)

{

mar[i]++;

if(n / i != i)

mar[n/i]++;

}

}

}



int main()

{

// prime();

int T;

int cnt = 0;

cin >> T;

while(T--)

{

int n;

scanf("%d", &n);

MMF(mar);

for(int i = 0; i < n; i++)

{

int t;

scanf("%d", &t);

rec(t);

}

for (int i = 10000; i >= 1; --i) {

ans[i] = C4(mar[i]);

for (int j = 2 * i; j <= 10000; j += i)

{

ans[i] -= ans[j];

}

}

printf("Case %d: %lld\n", ++cnt, ans[1]);

}

return 0;

}

//刚开始想找质因数排列组合 WA后一想 可能存在这种情况:某4个数的 相同质因数 有两种,这样后的容斥情况重复了

LightOJ 1161 - Extreme GCD 容斥的更多相关文章

  1. 1161 - Extreme GCD

    1161 - Extreme GCD    PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB All ...

  2. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  3. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  4. HDU 5656 CA Loves GCD (容斥)

    题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少. 析:枚举gcd,然后求每个 ...

  5. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  6. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  7. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  8. HDU - 1695 GCD (容斥+枚举)

    题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...

  9. GCD HDU - 1695 (欧拉 + 容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. 20145214 《Java程序设计》第1周学习总结

    20145214 <Java程序设计>第1周学习总结 教材学习内容总结 第一章 了解了Java的诞生和版本演进的历史,目前的最新版本是Java SE8. java的三大平台分别是Java ...

  2. Android中的回调Callback

    回调就是外部设置一个方法给一个对象, 这个对象可以执行外部设置的方法, 通常这个方法是定义在接口中的抽象方法, 外部设置的时候直接设置这个接口对象即可. 例如给安卓添加按钮点击事件, 我们创建了OnC ...

  3. Internet Technologe

    Store and Forward Networking Efficient Message Transmission:Packet Switching(分组交换) Challenge: in a s ...

  4. # 团队作业MD

    队员姓名与学号 051501124 王彬(组长) 111500206 赵畅 031602215 胡展瑞 031602320 李恒达 031602131 佘岳昕 031602431 王源 0316022 ...

  5. String 和 CharSequence 关系与区别

    String 继承于CharSequence,也就是说String也是CharSequence类型. CharSequence是一个接口,它只包括length(), charAt(int index) ...

  6. redis切换数据库的方法【jedis】

    package com.test; import redis.clients.jedis.Jedis; public class readredis { public static void main ...

  7. PAT 甲级 1128 N Queens Puzzle

    https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...

  8. 【linux】- nohup 和 &

    &的意思是在后台运行, 什么意思呢? 意思是说,当你在执行 ./a.out & 的时候,即使你用ctrl C,那么a.out照样运行(因为对SIGINT信号免疫).但是要注意,如果你直 ...

  9. Maven 生命周期 和插件

    1.3 生命周期1.3.1 什么是生命周期? Maven生命周期就是为了对所有的构建过程进行抽象和统一.包括项目清理.初始化.编译.打包.测试.部署等几乎所有构建步骤. 生命周期可以理解为构建工程的步 ...

  10. JAVA IDE IntelliJ IDEA使用简介(三)—之你不能忘记的快捷键

    IDEA有许多的快捷键来帮助你更便捷的编写代码,以下列出的快捷键(默认情况下,你还没有定制你的快捷键)是工作中经常需要使用到的,请牢记 快捷键 描述 备注 Alt+F1 视图切换 切换当前工作文件的视 ...