OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to use other find to refine the result.

Here i to use cv::findTransformECC. Ecc means Enhanced Correlation Coefficient. In this function, it use Guassian Newton iteration to find the maximum correlation coefficient.

int _refineSrchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat matWarp = cv::Mat::eye(, , CV_32FC1);
matWarp.at<float>(,) = ptResult.x;
matWarp.at<float>(,) = ptResult.y;int number_of_iterations = ;
double termination_eps = 1e-; cv::findTransformECC ( matTmpl, mat, matWarp, MOTION_TRANSLATION, TermCriteria (TermCriteria::COUNT+TermCriteria::EPS,
number_of_iterations, termination_eps));
ptResult.x = matWarp.at<float>(,);
ptResult.y = matWarp.at<float>(,);
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineSrchTemplate ( mat, matTmpl, ptResult ); ptResult.x += (float)( matTmpl.cols / + 0.5 ); // +0.5 is the center of the template is between 2 pixels. For example, if template size is 20, the center of the image is 10.5.
ptResult.y += (float)( matTmpl.rows / + 0.5 ); //The refine returned result is the left upper corner cooridnate.
return ;
}

There is also another way to refine the template matching result. It is by minimizing the difference between template and search image. In this method i use Levenberg–Marquardt method to iterate. It has been introduced in detail in paper http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf. And pseudo code has been given in page 15. I implemented in C++ based on OpenCv. The source code is as below.

void filter2D_Conv(InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-,-),
double delta = , int borderType = BORDER_DEFAULT )
{
cv::Mat newKernel;
const int FLIP_H_Z = -;
cv::flip ( kernel, newKernel, FLIP_H_Z );
cv::Point newAnchor = anchor;
if ( anchor.x > && anchor.y >= )
newAnchor = cv::Point ( newKernel.cols - anchor.x - , newKernel.rows - anchor.y - );
cv::filter2D ( src, dst, ddepth, newKernel, newAnchor, delta, borderType );
}
float GuassianValue2D(float ssq, float x, float y )
{
return exp( -(x*x + y*y) / ( 2.0 *ssq ) ) / ( 2.0 * CV_PI * ssq );
} template<typename _tp>
void meshgrid ( float xStart, float xInterval, float xEnd, float yStart, float yInterval, float yEnd, cv::Mat &matX, cv::Mat &matY )
{
std::vector<_tp> vectorX, vectorY;
_tp xValue = xStart;
while ( xValue <= xEnd ) {
vectorX.push_back(xValue);
xValue += xInterval;
} _tp yValue = yStart;
while ( yValue <= yEnd ) {
vectorY.push_back(yValue);
yValue += yInterval;
}
cv::Mat matCol ( vectorX );
matCol = matCol.reshape ( , ); cv::Mat matRow ( vectorY );
matRow = matRow.reshape ( , vectorY.size() );
matX = cv::repeat ( matCol, vectorY.size(), );
matY = cv::repeat ( matRow, , vectorX.size() );
} int _refineWithLMIteration( const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult )
{
cv::Mat matGuassian;
int width = ;
float ssq = .;
matGuassian.create(width * + , width * + , CV_32FC1 );
cv::Mat matI, matT;
mat.convertTo ( matI, CV_32FC1);
matTmpl.convertTo ( matT, CV_32FC1 ); cv::Mat matX, matY;
meshgrid<float> ( -width, , width, -width, , width, matX, matY );
for ( int row = ; row < matX.rows; ++ row )
for ( int col = ; col < matX.cols; ++ col )
{
matGuassian.at<float>(row, col) = GuassianValue2D( ssq, matX.at<float>(row, col), matY.at<float>(row, col) );
}
matGuassian = matGuassian.mul(-matX);
cv::Mat matTmp( matGuassian, Range::all(), cv::Range(,));
float fSum = cv::sum(matTmp)[];
cv::Mat matGuassianKernalX, matGuassianKernalY;
matGuassianKernalX = matGuassian / fSum; //XSG question, the kernel is reversed?
cv::transpose( matGuassianKernalX, matGuassianKernalY ); /**************** Using LM Iteration ****************/
int N = , v = ;
cv::Mat matD;
matD.create( ,, CV_32FC1 );
matD.at<float>(, ) = ptResult.x;
matD.at<float>(, ) = ptResult.y; cv::Mat matDr = matD.clone(); cv::Mat matInputNew; auto interp2 = [matI, matT](cv::Mat &matOutput, const cv::Mat &matD) {
cv::Mat map_x, map_y;
map_x.create(matT.size(), CV_32FC1);
map_y.create(matT.size(), CV_32FC1);
cv::Point2f ptStart(matD.at<float>(, ), matD.at<float>(, ) );
for (int row = ; row < matT.rows; ++ row )
for (int col = ; col < matT.cols; ++ col )
{
map_x.at<float>(row, col) = ptStart.x + col;
map_y.at<float>(row, col) = ptStart.y + row;
}
cv::remap ( matI, matOutput, map_x, map_y, cv::INTER_LINEAR );
}; interp2 ( matInputNew, matD ); cv::Mat matR = matT - matInputNew;
cv::Mat matRn = matR.clone();
float fRSum = cv::sum ( matR.mul ( matR ) )[];
float fRSumN = fRSum; cv::Mat matDerivativeX, matDerivativeY;
filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE ); cv::Mat matRt = matR.reshape ( , );
cv::Mat matRtTranspose;
cv::transpose ( matRt, matRtTranspose );
matDerivativeX = matDerivativeX.reshape ( , );
matDerivativeY = matDerivativeY.reshape ( , ); const float* p = matDerivativeX.ptr<float>();
std::vector<float> vecDerivativeX(p, p + matDerivativeX.cols); cv::Mat matJacobianT, matJacobian;
matJacobianT.push_back ( matDerivativeX );
matJacobianT.push_back ( matDerivativeY );
cv::transpose ( matJacobianT, matJacobian ); cv::Mat matE = cv::Mat::eye(, , CV_32FC1); cv::Mat A = matJacobianT * matJacobian;
cv::Mat g = - matJacobianT * matRtTranspose; double min, max;
cv::minMaxLoc(A, &min, &max);
float mu = .f * max;
float err1 = 1e-, err2 = 1e-;
auto Nmax = ;
while ( cv::norm ( matDr ) > err2 && N < Nmax ) {
++ N;
cv::solve ( A + mu * matE, -g, matDr ); // equal to matlab matDr = (A+mu*E)\(-g); cv::Mat matDn = matD + matDr;
if ( cv::norm ( matDr ) < err2 ) {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matR.mul ( matR ) )[];
matD = matDn;
break;
}else {
if (matDn.at<float> ( , ) > matI.cols - matT.cols ||
matDn.at<float> ( , ) < ||
matDn.at<float> ( , ) > matI.rows - matT.rows ||
matDn.at<float> ( , ) < ) {
mu *= v;
v *= ;
}else {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matRn.mul ( matRn ) )[]; cv::Mat matDrTranspose;
cv::transpose ( matDr, matDrTranspose );
cv::Mat matL = ( matDrTranspose * ( mu * matDr - g ) ); // L(0) - L(hlm) = 0.5 * h' ( uh - g)
auto L = matL.at<float>(, );
auto F = fRSum - fRSumN;
float rho = F / L; if ( rho > ) {
matD = matDn.clone();
matR = matRn.clone();
fRSum = fRSumN; filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
matRt = matR.reshape(, );
cv::transpose ( matRt, matRtTranspose ); matDerivativeX = matDerivativeX.reshape(, );
matDerivativeY = matDerivativeY.reshape(, ); matJacobianT.release();
matJacobianT.push_back(matDerivativeX);
matJacobianT.push_back(matDerivativeY);
cv::transpose(matJacobianT, matJacobian); A = matJacobianT * matJacobian;
g = - matJacobianT * matRtTranspose; mu *= max ( .f/.f, - pow ( * rho-, ) );
}else {
mu *= v; v *= ;
}
}
}
} ptResult.x = matD.at<float>(, );
ptResult.y = matD.at<float>(, );
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineWithLMIteration(mat, matTmpl, ptResult);   ptResult.x += (float)( matTmpl.cols / 2 + 0.5 );
  ptResult.y += (float)( matTmpl.rows / 2 + 0.5 );   return ;
}

OpenCV Template Matching Subpixel Accuracy的更多相关文章

  1. OpenCV stereo matching BM 算法

    一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...

  2. OpenCV stereo matching 代码 matlab实现视差显示

    转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究 ...

  3. [OpenCV] Feature Matching

    得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...

  4. [ICRA 2019]Multi-Task Template Matching for Object Detection, Segmentation and Pose Estimation Using Depth Images

    简介         本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提 ...

  5. Get Intensity along a line based on OpenCV

    The interpolate function is used to get intensity of a point which is not on exactly a pixel. The co ...

  6. Opencv 摄像头矫正

    摄像机有6个外参数(3个旋转,3个平移),5个内参数(fx,fy,cx,cy,θ),摄像机的内参数在不同的视场,分辨率中是一样的,但是不同的视角下6个外参数是变化的,一个平面物体可以固定8个参数,(为 ...

  7. OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)

    PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...

  8. Opencv——相机标定

    相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角 ...

  9. [OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)

    部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • ...

随机推荐

  1. LeetCode----Array

    Remove Duplicates from Sorted Array 思路:两个指针,头指针在0,尾指针从1开始寻找,找到第一个不等于头指针值的数,覆盖掉头指针后面那个数,然后尾指针往后移. pub ...

  2. kvm虚拟化平台搭建入门

    KVM虚拟化有两种网络模式:1)Bridge网桥模式2)NAT网络地址转换模式Bridge方式适用于服务器主机的虚拟化.NAT方式适用于桌面主机的虚拟化. 环境: 本次实验要开启VMWare中对应Ce ...

  3. GBDT算法原理深入解析

    GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting ...

  4. Python Q&A

    http://ilian.i-n-i.org/python-interview-question-and-answers/ http://www.geekinterview.com/Interview ...

  5. Mysql5.5源码安装步骤笔记记录

    1.cmake软件的安装wget https://cmake.org/files/v3.5/cmake-3.5.0-rc3.tar.gztar xf cmake-3.5.0.tar.gzcd cmak ...

  6. storm基础系列之五---------接入数据收集系统flume

    1.基本结构介绍 flume是三层架构,agent,collector,storage.每一层都可水平扩展. 其中,agent就是数据采集方:collector是数据整合方:storage是各种数据落 ...

  7. js嵌套对象相等比较的一种方法 (原创)

    做前端开发经常会遇到比较js对象是否相等的情况, 或者说其它问题往往会归结到这个问题上来:比如对象数组的去重复. 网上看到过很多例子, 但是基本上都是那种比较简单的对象结构, 而复杂的对象结构,比如对 ...

  8. js判断浏览器

    function myBrowser(){ var userAgent = navigator.userAgent; //取得浏览器的userAgent字符串 ; if (isOpera) { ret ...

  9. Rhino+envjs-1.2.js 在java运行网站js 工具类

    java爬虫遇到个页面加密的东西,找了些资料学习学习 做了个java运行js的工具类,希望对大家有用,其中用到client(获取js)可以自行换成自己的client.主要是用了 Rhino就是Java ...

  10. [LeetCode OJ] Max Points on a Line

    Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...