OpenCV Template Matching Subpixel Accuracy
OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reach pixel level, to achieve subpixel accuracy, need to use other find to refine the result.
Here i to use cv::findTransformECC. Ecc means Enhanced Correlation Coefficient. In this function, it use Guassian Newton iteration to find the maximum correlation coefficient.
int _refineSrchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat matWarp = cv::Mat::eye(, , CV_32FC1);
matWarp.at<float>(,) = ptResult.x;
matWarp.at<float>(,) = ptResult.y;int number_of_iterations = ;
double termination_eps = 1e-; cv::findTransformECC ( matTmpl, mat, matWarp, MOTION_TRANSLATION, TermCriteria (TermCriteria::COUNT+TermCriteria::EPS,
number_of_iterations, termination_eps));
ptResult.x = matWarp.at<float>(,);
ptResult.y = matWarp.at<float>(,);
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineSrchTemplate ( mat, matTmpl, ptResult ); ptResult.x += (float)( matTmpl.cols / + 0.5 ); // +0.5 is the center of the template is between 2 pixels. For example, if template size is 20, the center of the image is 10.5.
ptResult.y += (float)( matTmpl.rows / + 0.5 ); //The refine returned result is the left upper corner cooridnate.
return ;
}
There is also another way to refine the template matching result. It is by minimizing the difference between template and search image. In this method i use Levenberg–Marquardt method to iterate. It has been introduced in detail in paper http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf. And pseudo code has been given in page 15. I implemented in C++ based on OpenCv. The source code is as below.
void filter2D_Conv(InputArray src, OutputArray dst, int ddepth,
InputArray kernel, Point anchor = Point(-,-),
double delta = , int borderType = BORDER_DEFAULT )
{
cv::Mat newKernel;
const int FLIP_H_Z = -;
cv::flip ( kernel, newKernel, FLIP_H_Z );
cv::Point newAnchor = anchor;
if ( anchor.x > && anchor.y >= )
newAnchor = cv::Point ( newKernel.cols - anchor.x - , newKernel.rows - anchor.y - );
cv::filter2D ( src, dst, ddepth, newKernel, newAnchor, delta, borderType );
}
float GuassianValue2D(float ssq, float x, float y )
{
return exp( -(x*x + y*y) / ( 2.0 *ssq ) ) / ( 2.0 * CV_PI * ssq );
} template<typename _tp>
void meshgrid ( float xStart, float xInterval, float xEnd, float yStart, float yInterval, float yEnd, cv::Mat &matX, cv::Mat &matY )
{
std::vector<_tp> vectorX, vectorY;
_tp xValue = xStart;
while ( xValue <= xEnd ) {
vectorX.push_back(xValue);
xValue += xInterval;
} _tp yValue = yStart;
while ( yValue <= yEnd ) {
vectorY.push_back(yValue);
yValue += yInterval;
}
cv::Mat matCol ( vectorX );
matCol = matCol.reshape ( , ); cv::Mat matRow ( vectorY );
matRow = matRow.reshape ( , vectorY.size() );
matX = cv::repeat ( matCol, vectorY.size(), );
matY = cv::repeat ( matRow, , vectorX.size() );
} int _refineWithLMIteration( const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult )
{
cv::Mat matGuassian;
int width = ;
float ssq = .;
matGuassian.create(width * + , width * + , CV_32FC1 );
cv::Mat matI, matT;
mat.convertTo ( matI, CV_32FC1);
matTmpl.convertTo ( matT, CV_32FC1 ); cv::Mat matX, matY;
meshgrid<float> ( -width, , width, -width, , width, matX, matY );
for ( int row = ; row < matX.rows; ++ row )
for ( int col = ; col < matX.cols; ++ col )
{
matGuassian.at<float>(row, col) = GuassianValue2D( ssq, matX.at<float>(row, col), matY.at<float>(row, col) );
}
matGuassian = matGuassian.mul(-matX);
cv::Mat matTmp( matGuassian, Range::all(), cv::Range(,));
float fSum = cv::sum(matTmp)[];
cv::Mat matGuassianKernalX, matGuassianKernalY;
matGuassianKernalX = matGuassian / fSum; //XSG question, the kernel is reversed?
cv::transpose( matGuassianKernalX, matGuassianKernalY ); /**************** Using LM Iteration ****************/
int N = , v = ;
cv::Mat matD;
matD.create( ,, CV_32FC1 );
matD.at<float>(, ) = ptResult.x;
matD.at<float>(, ) = ptResult.y; cv::Mat matDr = matD.clone(); cv::Mat matInputNew; auto interp2 = [matI, matT](cv::Mat &matOutput, const cv::Mat &matD) {
cv::Mat map_x, map_y;
map_x.create(matT.size(), CV_32FC1);
map_y.create(matT.size(), CV_32FC1);
cv::Point2f ptStart(matD.at<float>(, ), matD.at<float>(, ) );
for (int row = ; row < matT.rows; ++ row )
for (int col = ; col < matT.cols; ++ col )
{
map_x.at<float>(row, col) = ptStart.x + col;
map_y.at<float>(row, col) = ptStart.y + row;
}
cv::remap ( matI, matOutput, map_x, map_y, cv::INTER_LINEAR );
}; interp2 ( matInputNew, matD ); cv::Mat matR = matT - matInputNew;
cv::Mat matRn = matR.clone();
float fRSum = cv::sum ( matR.mul ( matR ) )[];
float fRSumN = fRSum; cv::Mat matDerivativeX, matDerivativeY;
filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE ); cv::Mat matRt = matR.reshape ( , );
cv::Mat matRtTranspose;
cv::transpose ( matRt, matRtTranspose );
matDerivativeX = matDerivativeX.reshape ( , );
matDerivativeY = matDerivativeY.reshape ( , ); const float* p = matDerivativeX.ptr<float>();
std::vector<float> vecDerivativeX(p, p + matDerivativeX.cols); cv::Mat matJacobianT, matJacobian;
matJacobianT.push_back ( matDerivativeX );
matJacobianT.push_back ( matDerivativeY );
cv::transpose ( matJacobianT, matJacobian ); cv::Mat matE = cv::Mat::eye(, , CV_32FC1); cv::Mat A = matJacobianT * matJacobian;
cv::Mat g = - matJacobianT * matRtTranspose; double min, max;
cv::minMaxLoc(A, &min, &max);
float mu = .f * max;
float err1 = 1e-, err2 = 1e-;
auto Nmax = ;
while ( cv::norm ( matDr ) > err2 && N < Nmax ) {
++ N;
cv::solve ( A + mu * matE, -g, matDr ); // equal to matlab matDr = (A+mu*E)\(-g); cv::Mat matDn = matD + matDr;
if ( cv::norm ( matDr ) < err2 ) {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matR.mul ( matR ) )[];
matD = matDn;
break;
}else {
if (matDn.at<float> ( , ) > matI.cols - matT.cols ||
matDn.at<float> ( , ) < ||
matDn.at<float> ( , ) > matI.rows - matT.rows ||
matDn.at<float> ( , ) < ) {
mu *= v;
v *= ;
}else {
interp2 ( matInputNew, matDn );
matRn = matT - matInputNew;
fRSumN = cv::sum ( matRn.mul ( matRn ) )[]; cv::Mat matDrTranspose;
cv::transpose ( matDr, matDrTranspose );
cv::Mat matL = ( matDrTranspose * ( mu * matDr - g ) ); // L(0) - L(hlm) = 0.5 * h' ( uh - g)
auto L = matL.at<float>(, );
auto F = fRSum - fRSumN;
float rho = F / L; if ( rho > ) {
matD = matDn.clone();
matR = matRn.clone();
fRSum = fRSumN; filter2D_Conv ( matInputNew, matDerivativeX, CV_32F, matGuassianKernalX, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
filter2D_Conv ( matInputNew, matDerivativeY, CV_32F, matGuassianKernalY, cv::Point(-, - ), 0.0, BORDER_REPLICATE );
matRt = matR.reshape(, );
cv::transpose ( matRt, matRtTranspose ); matDerivativeX = matDerivativeX.reshape(, );
matDerivativeY = matDerivativeY.reshape(, ); matJacobianT.release();
matJacobianT.push_back(matDerivativeX);
matJacobianT.push_back(matDerivativeY);
cv::transpose(matJacobianT, matJacobian); A = matJacobianT * matJacobian;
g = - matJacobianT * matRtTranspose; mu *= max ( .f/.f, - pow ( * rho-, ) );
}else {
mu *= v; v *= ;
}
}
}
} ptResult.x = matD.at<float>(, );
ptResult.y = matD.at<float>(, );
return ;
} int matchTemplate(const cv::Mat &mat, cv::Mat &matTmpl, cv::Point2f &ptResult)
{
cv::Mat img_display, matResult;
const int match_method = CV_TM_SQDIFF; mat.copyTo(img_display); /// Create the result matrix
int result_cols = mat.cols - matTmpl.cols + ;
int result_rows = mat.rows - matTmpl.rows + ; matResult.create(result_rows, result_cols, CV_32FC1); /// Do the Matching and Normalize
cv::matchTemplate(mat, matTmpl, matResult, match_method);
cv::normalize ( matResult, matResult, , , cv::NORM_MINMAX, -, cv::Mat() ); /// Localizing the best match with minMaxLoc
double minVal; double maxVal;
cv::Point minLoc, maxLoc, matchLoc; cv::minMaxLoc(matResult, &minVal, &maxVal, &minLoc, &maxLoc, cv::Mat()); /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if (match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
matchLoc = minLoc;
else
matchLoc = maxLoc; ptResult.x = (float)matchLoc.x;
ptResult.y = (float)matchLoc.y;
_refineWithLMIteration(mat, matTmpl, ptResult); ptResult.x += (float)( matTmpl.cols / 2 + 0.5 );
ptResult.y += (float)( matTmpl.rows / 2 + 0.5 ); return ;
}
OpenCV Template Matching Subpixel Accuracy的更多相关文章
- OpenCV stereo matching BM 算法
一直找不到opencv stereo matching的根据和原理出处,下面这个文章贴了个链接,有时间看看: Basically OpenCV provides 2 methods to calcul ...
- OpenCV stereo matching 代码 matlab实现视差显示
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 基础知识 计算机视觉是一门研究 ...
- [OpenCV] Feature Matching
得到了杂乱无章的特征点后,要筛选出好的特征点,也就是good matches. BruteForceMatcher FlannBasedMatcher 两者的区别:http://yangshen998 ...
- [ICRA 2019]Multi-Task Template Matching for Object Detection, Segmentation and Pose Estimation Using Depth Images
简介 本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提 ...
- Get Intensity along a line based on OpenCV
The interpolate function is used to get intensity of a point which is not on exactly a pixel. The co ...
- Opencv 摄像头矫正
摄像机有6个外参数(3个旋转,3个平移),5个内参数(fx,fy,cx,cy,θ),摄像机的内参数在不同的视场,分辨率中是一样的,但是不同的视角下6个外参数是变化的,一个平面物体可以固定8个参数,(为 ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- Opencv——相机标定
相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像. 相机标定的输入:标定图像上所有内角 ...
- [OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • ...
随机推荐
- 动态加载(异步加载)jquery/MUI类库 页面加载完成后加载js类库
动态加载Mui类库: // ==UserScript== // @name // @version 1.4.0 // @author zzdhidden@gmail.com // @namespace ...
- APP跳到系统设置
//定位服务设置界面 NSURL *url = [NSURL URLWithString:@"prefs:root=LOCATION_SERVICES"]; if ([[UIApp ...
- Rails : css或js文件无法成功预编译或调用jquery类插件时预编译问题
调用bootstrap css框架时,将bootstrap文件夹放入 vendor/assets/下 bootstrap文件结构如下: [shenma@localhost demo]$ ls v ...
- Python的第七天
面向对象编程: 编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马,实现一个任 ...
- CSS详解
Web前端开发css基础样式总结 颜色和单位的使用 颜色 用颜色的名字表示颜色,比如:red 用16进制表示演示 比如:#FF0000 用rgb数值表示颜色,rgb(红,绿,蓝),每个值都在0-255 ...
- OAF_开发系列28_实现OAF中反编译获取class包代码JD Compiler(案例)
20150730 Created By BaoXinjian
- dependencies 和 devDependencies
npm install node_module –save自动更新dependencies字段值 npm install node_module –save-dev自动更新devDependencie ...
- 理解C++的inline函数
C++的inline函数就是编译器在编译代码时,将"对此函数的每一个调用"都以函数本体替换之,该过程发生在编译期间. inline函数的优点是,它可以省去函数调用所带来的额外开销, ...
- Kendo UI For ASP.NET MVC项目资源
一.官网: 1.Telerik大学官网:http://best.telerikacademy.com/ 二.相关博客 1.http://blog.csdn.net/magicsgxie/article ...
- Spring in action - 会话管理
传统的会话管理是用一个session表保存会话信息,每次请求时读取.写入该表. public function read($sessID) { $hander = is_array($this-> ...